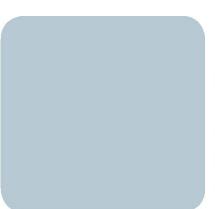


Valley Initiative for Development and Advancement (VIDA)

Appendices for Three-Year Impact Report



OPRE Report 2021-96

June 2021

Valley Initiative for Development and Advancement (VIDA): Appendices for Three-Year Impact Report

A Pathways for Advancing Careers and Education (PACE) / Career Pathways Intermediate Outcomes Study Publication

OPRE Report 2021-96

June 2021

David Judkins, Douglas Walton, Daniel Litwok, Gabriel Durham, and Samuel Dastrup, Abt Associates

Submitted to:

Nicole Constance and Amelia Popham, Project Officers Office of Planning, Research, and Evaluation Administration for Children and Families U.S. Department of Health and Human Services

Contract Number: HHSP23320095624WC, Task Order HHSP23337019T

Project Director: Larry Buron

Principal Investigator: David Fein; Director of Analysis: David Judkins

Abt Associates

6130 Executive Boulevard Rockville, MD 20852

This report is in the public domain. Permission to reproduce is not necessary. Suggested citation: Judkins, David, Douglas Walton, Daniel Litwok, Gabriel Durham, and Samuel Dastrup. 2021. *Valley Initiative for Development and Advancement (VIDA): Appendices for Three-Year Impact Report.* OPRE Report 2021-96. Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services.

Disclaimer: The views expressed in this publication do not necessarily reflect the views or policies of the Office of Planning, Research, and Evaluation, the Administration for Children and Families, or the U.S. Department of Health and Human Services.

This report and other reports sponsored by the Office of Planning, Research, and Evaluation are available at www.acf.hhs.gov/opre.

Contents

Appendix A	A: Baseline Characteristics and Adjustments	1
A.1	Details on Baseline Covariates	1
A.2	Comparing Treatment and Control Groups at Baseline	4
A.3	Regression Adjustment	6
Appendix E	3: College Records Data	14
B.1	Rationale for Use of Local College Records	14
B.2	Specification of College Records–Based Outcomes	15
Appendix (C: Three-Year Survey Data	17
C.1	Measures Based on Follow-up Survey Data	18
C.2	Imputation in the Three-Year Survey	24
C.3	Survey Nonresponse Analysis	38
C.4	Quality and Completeness of Exam-Based Credentials Reported in the Sur	vey48
C.5	Quality and Completeness of School-Issued Credentials Reported in the Survey	49
Appendix [D: National Student Clearinghouse Data	50
D.1	Coverage	50
D.2	Data and Measures	51
D.3	Program Impacts on NSC-Measured Outcomes	51
Appendix E	E: Sensitivity Analyses of Education Impacts	53
Appendix F	: NDNH's Unemployment Insurance Wage Data	55
F.1	Data Collection Process	55
F.2	Data and Measures	56
Appendix (G: Comparing NDNH- and Survey-Based Employment and Earnings Estimates	58
Appendix I	H: Treatment of Outliers	60
Appendix I	Cost-Benefit Analysis Supplement	61
I.1	Additional Cost Analysis	61
1.2	Cost Analysis Methods	62
Annendiy F	Pafarancas	68

List of Exhibits

Exhibit A-1:	Operationalization of Baseline Measures Used as Covariates in Regression-Adjusted Impact Estimates	2
Exhibit A-2:	Baseline Balance	5
Exhibit A-3:	Covariates Selected, by Outcome Domain	11
Exhibit A-4:	Comparison of Confirmatory and Secondary Impact Estimates Unadjusted and Adjusted for Baseline Imbalances	13
Exhibit B-1:	National Student Clearinghouse–Reported Enrollment at Local Colleges and Other Colleges by Study Group for the VIDA Evaluation Sample	15
Exhibit B-2:	Details on Specification of College Records-Based Education Outcomes	16
Exhibit C-1:	Details on Specifications for Survey-Based Education Outcomes in Chapter 3	18
Exhibit C-2:	Details on Specifications for Survey-Based Employment/Earnings Outcomes in Chapter 4	18
Exhibit C-3:	Details on Specifications for Survey-Based Career Knowledge and Supports Outcomes in Chapter 5	20
Exhibit C-4:	Details on Specifications for Survey-Based Family Economic Well-Being Outcomes in Chapter 5	21
Exhibit C-5:	Details on Specifications for Survey-Based Parental Engagement and Child Outcomes in Chapter 5	23
Exhibit C-6:	Imputation Rates among Survey Respondents in VIDA	25
Exhibit C-7:	Comparison of Selected Impact Estimates of VIDA	33
Exhibit C-8:	Date Imputation for Three-Year Impact Study (Pooled PACE/HPOG Sample)	37
Exhibit C-9:	Baseline Balance for VIDA on Full Sample, Unweighted Respondent Sample, and Weighted Respondent Sample	40
Exhibit C-10:	Comparison of Selected Estimates of the Impact of VIDA for the Unweighted and Weighted Survey Samples	43
Exhibit D-1:	NSC College-Level Cooperation Rates by College Control and Level from 2013 through 2016	50
Exhibit D-2:	Comparisons of Impacts of VIDA Based on Local College Records vs. Impacts Based on NSC Records	52
Exhibit E-1:	Comparisons of Impacts of VIDA, Based on Adjusted Local College Records with Impacts Based on the Three-Year Follow-up Survey	54
Exhibit G-1:	Impacts of VIDA on Earnings and Employment around Follow-up Q12 Based on Wage Records and Self-Reports	59

Abt Associates Contents pg. iii

Exhibit I-1: Costs of VIDA by Perspective	61
Exhibit I-2: Costs of Postsecondary Education and Training	62
Exhibit I-3: Comparison of Career Pathways Components Available to VIDA Control Group and Treatment Group Members	63
Exhibit I-4: Unit Costs of FTE Month Enrollment	66

Abt Associates Contents pg. iiii

Appendix A: Baseline Characteristics and Adjustments

This appendix starts with a description of the specification for baseline characteristics, including our approach to handling missing values (Section A.1). The next section compares distributions for treatment and control group members on these and other baseline measures (Section A.2), and the last section explains how the analyses control for these covariates in estimating impacts (Section A.3). It should be noted that Sections A.1 and A.2 are nearly unchanged from parallel appendices in the initial report on this program (Rolston, Copson, and Gardiner 2017). In contrast, the approach to covariate control in Section A.3 describes some important procedural changes from those used in that short-term report.

A.1 Details on Baseline Covariates

Exhibit A-1 shows the specifications and data sources for baseline covariates. Item nonresponse rates on these covariates were generally low. Across all nine PACE sites, item nonresponse rates were less than 4 percent except for parental college attendance (6.0 percent), typical high school grades (7.2 percent), family income (9.5 percent), and expected near-term future work hours (6.0 percent).

We imputed values for missing covariates using SUDAAN®/IMPUTE, a weighted hotdeck imputation procedure (Research Triangle Institute 2012). This imputation step entailed a single computer run on the combined sample from all nine PACE sites.¹ With this process, we replaced each missing value with an observed response from a similar case. Within specified strata, we random-matched cases with missing values to cases with reported values; we then copied over the reported value to the case where the value was missing. The strata represented a cross-classification of treatment-control status, site, National Student Clearinghouse (NSC)-reported enrollment status (*some* or *none*),² NSC-reported credential award (*some* or *none*), and number of months of NSC-reported enrollment.³

¹ Using the combined dataset better controlled for school enrollment status, as measured in NSC, in the smaller sites.

NSC has information on monthly enrollment and many credentials for 96 percent of college students. https://nscresearchcenter.org/workingwithourdata/.

In instances where this level of matching was too restrictive because we found no matched case with a reported value, we re-ran the procedure matching only on treatment status and NSC-reported enrollment status. In this second pass imputation, matches were allowed across sites.

Exhibit A-1: Operationalization of Baseline Measures Used as Covariates in Regression-Adjusted Impact Estimates

Variable Description	Operationalization Details	Data Source(s) (Survey Instrument: Survey Item Number)
Demographic Background		
Age	Categorical measure: Under 21 21-24 25-34 35+ a	BIF: B2_dob RABIT: R_RA_Date_Assigned
Female	Binary variable: 1 if female 0 if male	BIF: B7
Race/ethnicity	Categorical measure: Hispanic, any race Black, non-Hispanic White, non-Hispanic ^a Another race, non-Hispanic	BIF: B9
Family structure	Categorical measure: Spouse/partner, with children Spouse/partner, without children Single, with childrena Single, without children (Only biological and adopted children of randomized participant considered here. Stepchildren, grandchildren, younger siblings, and other children not considered.)	BIF: B13
Living with own parents	Binary variable: 1 if living with own parent(s) 0 otherwise	BIF: B13
	(Presence of parents of spouse not considered.)	
Educational Background		
Parent attended college	Binary variable: 1 if either parent attended college 0 otherwise	BIF: B21
Usual high school grades	Categorical measure: Mostly A's Mostly B's Mostly C's or below ^a	BIF: B23
Highest level of education completed	Categorical measure: No collegea Less than one year of college credit One or more years of college credit Associate degree or above	BIF: B17
Career Knowledge		
Career Knowledge Index (average of items)	Proportion of responses to seven questions about career orientation and knowledge to which respondent answered "strongly agree." Missing if four or more of seven responses blank.	SAQ: S13

Variable Description	Operationalization Details	Data Source(s) (Survey Instrument: Survey Item Number)
Psycho-Social Indices		- Talling Co.
Academic discipline ^b	Average of 10 items (scale ranging 1=strongly disagree to 6=strongly agree) after reversing responses to negatively phrased items. Missing if seven or more of 10 responses blank.	SAQ: S11a
Training commitment ^c	Average of 10 items (scale ranging 1=strongly disagree to 6=strongly agree) after reversing responses to negatively phrased items. Missing if seven or more of 10 responses blank.	SAQ: S11b
Academic confidenced	Average of 12 items (scale ranging 1=strongly disagree to 6=strongly agree) after reversing responses to negatively phrased items. Missing if nine or more of 12 responses blank.	SAQ: S11d
Emotional stabilitye	Average of 12 items (scale ranging 1=strongly disagree to 6=strongly agree) after reversing responses to negatively phrased items. Missing if nine or more of 12 responses blank.	SAQ: S11e
Social supportf	Average of 10 items (scale ranging 1=strongly disagree to 4=strongly agree). Missing if seven or more of 10 responses blank.	SAQ: S12
Resource Constraints (Finar	ncial)	
Family income in past 12 months	Categorical measure: Less than \$15,000 \$15,000-\$29,999 \$30,000+ a	BIF: B27
Received food assistance (WIC/SNAP) in past 12 months	Binary variable: 1 if yes 0 if no	BIF: B26b
Received public assistance or welfare in past 12 months	Binary variable: 1 if yes 0 if no	BIF: B26c
Reported financial hardship in past 12 months	Binary variable: 1 if yes to ever missed rent/mortgage payment in prior 12 months or reported generally not having enough money left at the end of the month to make ends meet over the last 12 months. 0 if otherwise	SAQ: S8, S9
Resource Constraints (Time		
Current work hours	Categorical measure: 0-19a 20-34 35+	BIF: B24
Expected work hours in next few months	Categorical measure for covariate: 0-19a 20-34 35+	SAQ: S2
Expecting to attend school part-time if accepted	Binary variable: 1 if yes 0 if no	SAQ: S1

Variable Description	Operationalization Details	Data Source(s) (Survey Instrument: Survey Item Number)
Life Challenges		
Frequency of situations interfering with school, work, job search, or family responsibilities	Average of six items of frequency of problems in past 12 months (childcare, transportation, alcohol or drug use, health, family arguments, physical threats). Scale ranges from 1=never to 5=very often. Missing if four or more responses were blank.	SAQ: S15
Stress ^f	Average of four items about feeling in control of important things and able to handle personal problems (scale 1=never to 5=very often over the past month) after reversing responses to negatively phrased items. Missing if three or more of four responses blank.	SAQ: S14

Key: BIF=Basic Information Form. RABIT=Random Assignment and Baseline Information Tool. SAQ=Self-Administered Questionnaire. SNAP=Supplemental Nutrition Assistance Program. WIC=Special Supplemental Nutrition Program for Women, Infants, and Children.

A.2 Comparing Treatment and Control Groups at Baseline

Exhibit A-2 shows tests for similarity in characteristics of treatment and control group members at baseline. If the means in the two columns are congruent, then "baseline balance" was achieved. Assessment of congruence involved testing for equality of the two means separately for each characteristic.

The last column contains *p*-values for tests of hypotheses that no systematic differences exist between the treatment and control groups. If we were to repeat the randomization process a large number of times, out of 28 tests, on average, three will fall outside a 90 percent confidence interval due to chance. In fact, the tests show exactly three statistically significant differences, which are marked in red. As described in the next section, regression adjustment helps to control for any effects that such chance differences might have on the impact estimates.

^a Category omitted in creating binary (dummy) variables for regression-adjustment models.

^b Modified version of the Academic Discipline scale in the Student Readiness Index (SRI), a proprietary product of ACT, Inc.; Le et al. (2005). Further validation in Peterson et al. (2006).

^c Modified version of Commitment to College scale in the Student Readiness Index (SRI), a proprietary product of ACT, Inc.; Le et al. (2005). Further validation in Peterson et al. (2006).

d Modified version of the Academic Self-Confidence scale in the Student Readiness Index (SRI), a proprietary product of ACT, Inc.; Le et al. (2005). Further validation in Peterson et al. (2006).

<sup>e Modified version of the Emotional Control scale in the Student Readiness Index (SRI), a proprietary product of ACT, Inc.; Le et al. (2005).

Further validation in Peterson et al. (2006).

Output

Description:

Descriptio</sup>

^f Modified version of the Social Provisions Scale; Cutrona and Russell (1987). Original scale has 24 items. This short version developed by Hoven (2012).

^g Cohen et al. (1983).

Exhibit A-2: Baseline Balance

Characteristic	All Participants	Treatment Group	Control Group	<i>p</i> -Value
Age (%)	•	•	•	.222
20 or under	14.1	12.3	15.8	
21-24	22.9	24.3	21.5	
25-34	40.6	39.3	41.9	
35+	22.4	24.1	20.8	
Female (%)	70.9	69.7	72.1	.410
Race/Ethnicity (%)				.235
Hispanic, any race	95.8	95.6	96.0	
Black, non-Hispanic	0.9	0.4	1.3	
White, non-Hispanic	3.0	3.6	2.4	
Another race, non-Hispanic	0.1	0.2	0.0	
Family Structure (%)				.018
Not living with spouse/partner and not living with children	42.2	40.6	43.9	
Not living with spouse/partner but living with children	28.2	30.7	25.6	
Living with spouse/partner and not living with children	15.8	13.0	18.6	
Living with spouse/partner and children	13.8	15.8	11.9	
Living with parents (%)	33.2	32.8	33.7	.765
One parent has at least some college (%)	26.3	27.3	25.3	.497
Usual High School Grades (%)		<u> </u>		.815
Mostly A's	19.3	20.1	18.5	
Mostly B's	65.7	64.9	66.5	
Mostly C's or below	15.0	15.0	15.0	
Highest Level of Education (%)				.038
Less than a high school diploma	0.7	0.2	1.3	
High school diploma or equivalent	26.1	23.0	29.2	
Less than one year of college	15.8	17.0	14.6	
One or more years of college	52.7	55.7	49.7	
Associate degree or higher	4.7	4.2	5.3	
Received vocational or technical certificate or diploma (%)	31.4	31.1	31.6	.892
Career Knowledge Index (mean)	0.61	0.61	0.61	.962
Psycho-Social Indices (means)	5.52	5.50	5.54	.320
Academic Discipline Index	5.77	5.76	5.79	.240
Training Commitment Index	5.03	5.02	5.05	.586
Academic Self-Confidence Index	5.23	5.21	5.25	.340
Emotional Stability Index	3.30	3.29	3.32	.256
Social Support Index	2.20	2.21	2.19	.711
Stress Index	1.54	1.57	1.52	.109
Depression Index	5.52	5.50	5.54	.320
Family Income in Past 12 Months (%)				.238
Less than \$15,000	50.9	49.6	52.3	-
\$15,000-\$29,999	36.5	39.0	34.0	
\$30,000+	12.6	11.5	13.8	
Family income (mean)	\$16,376	\$16,277	\$16,474	.813

	All	Treatment	Control	
Characteristic	Participants	Group	Group	<i>p</i> -Value
Public Assistance/Hardship Past 12 Months (%)				
Received WIC or SNAP	67.6	66.5	68.8	.442
Received public assistance or welfare	5.5	6.0	5.0	.501
Reported financial hardship	67.2	66.5	67.9	.630
Current Work Hours (%)				.017
0	64.9	62.8	67.0	
1-19	11.8	10.9	12.8	
20-34	14.8	18.4	11.1	
35+	8.5	7.9	9.1	
Expected Work Hours in Next Few Months (%)				.321
0	55.3	53.7	56.8	
1-19	12.6	11.5	13.6	
20-34	21.0	23.3	18.8	
35+	11.2	11.5	10.8	
Life Challenges Index (mean)	1.62	1.63	1.61	.648
Owns a car (%)	67.9	67.7	68.1	.893
Has both computer and internet at home (%)	58.3	59.6	57.1	.436
Ever arrested (%)	17.9	19.5	16.2	.187
Sample sizes	958	478	480	

Source: PACE Basic Information Form. PACE Self-Administered Questionnaire.

Note: Tests for statistically significant imbalance were based on SAS/FREQ procedure for categorical outcomes and on the SAS/TTEST procedure for other outcomes. Significant imbalances are highlighted in red, using a threshold for statistical significance of 10 percent. All values are based on baseline balance prior to imputation of missing data.

A.3 Regression Adjustment

This section describes the regression adjustment approach used to improve precision and minimize effects of sampling error on impact point estimates.

In a rigorous evaluation, random assignment ensures that if the sample size is large enough, differences in average potential outcomes between the treatment and control groups will become vanishingly small so that any observed differences in average outcomes across the two groups must almost certainly be the result of treatment.⁴ Even when sample sizes are modest, random assignment ensures that differences in average potential outcomes between the treatment and control groups arise from chance rather than biases of program operators or program evaluators. This means that unbiased estimates of the effects of treatment can be obtained by simply comparing average outcomes across the treatment and control groups. Moreover, it is easy to run formal tests of the hypothesis that the program has no effect (and

Potential outcomes are a central concept in the Neyman-Rubin causal model (Holland 1986). In this model, each person has an innate pair of possible outcomes: one if treated and the other if not treated. Only one of the two potential outcomes is ever observed for each person. The average difference in potential outcomes across a specific population is said to be the *local average treatment effect* (LATE) or more simply, just the "effect of treatment," with the context making clear the population to which it applies and supplemental analyses exploring whether the effect is homogenous within that population.

that therefore the observed difference in mean outcomes is the result of those accidental imbalances in potential outcomes across the two groups).

Despite these favorable properties of analysis based on simple comparisons of observed means, use of regression adjustment can reduce the impact of accidental imbalances in potential outcomes across the groups, thereby increasing power to detect small program impacts (Lin 2013). To achieve this benefit, the variables used in the regression adjustment must be predictive of potential outcomes. Including other variables will increase the variance on the estimated program impact rather than decreasing it.

Opinions and practice differ on how strong the evidence for correlation between a baseline variable and the outcome must be before it makes sense to include the baseline variable in the regression adjustment.⁵ Some favor a lean approach, including just those baseline variables that have a demonstrated strong relationship to the outcome. Others favor a more comprehensive approach including all baseline variables that have a plausible theoretical relationship to outcomes of interest, believing that doing so generally bolsters confidence in study findings (Tukey 1991).

Given demands to minimize burden on participants, all measured PACE baseline variables have at least plausible relationships to PACE outcomes, but some baseline variables have been discovered to have only weak empirical relationships with PACE outcomes. Moreover, one could combine the directly measured characteristics into a limited number of interactions. So some judgment must be exercised about which covariates to include in regression adjustments and which to exclude.

Opinions and practice also differ on how much to customize decisions about covariate inclusion across outcomes in evaluations (such as this PACE evaluation of VIDA) with multiple outcomes. A single uniform set of decisions promotes transparency, making it easier for readers to understand the procedure, while a more customized approach is likely to improve variances for at least some outcomes given that the correlation between a covariate and an outcome will vary by outcome.

In preliminary analyses for the first round of PACE reports, the team planned to use a fairly comprehensive approach with a uniform set of decisions but discovered that this approach was causing the variances on adjusted impacts to be larger than the variances on unadjusted impacts. The discovery prompted a switch to a different approach for the first round of reports, which ultimately proved not to work as well as hoped (Judkins 2019). In response, the team developed a new approach for the current round of PACE reports. This new approach emphasizes transparency and control on imbalanced covariates, while still trying to maximize precision as far as possible given those priorities. Details follow.

Equation (A.1) below shows the conventional regression-adjustment model:

$$Y_i = X_i \beta + \delta T_i + e_i \tag{A.1}$$

⁵ For a current review of practice, see Ciolino et al. (2019).

where Y_i is the outcome; X_i is a row vector of baseline characteristics (hereafter referred to as covariates); β is the vector of parameters indicating the influence of each covariate on the outcome; δ is the effect of treatment; T_i is a 0/1 dummy variable indicating treatment group membership; and e_i is an error term. We fit models of this sort using SAS®/SurveyReg, a procedure that uses a robust estimator of the variance of $\hat{\delta}$ and can accommodate the required nonresponse-adjustment weights for survey-measured outcomes. (See Appendix C Section C.3 for a discussion on nonresponse-adjustment weights.)

This method is known as ordinary least squares (OLS) and has excellent properties when the sample size is many times larger than the number of baseline characteristics used as covariates (Lin 2013), even when the outcomes are not normally distributed (Judkins and Porter 2016). Estimates of the treatment effect are "asymptotically unbiased," and under most conditions, the variance of the estimated treatment effect declines from the simple difference-in-mean-outcomes estimator of impact in proportion to the amount of outcome variation explained by the covariates.

Specifically, the relationship between the variance of the estimated treatment effect from the OLS estimation of Equation (A.1) and the explanatory power of the covariates is $var(\hat{\delta}) \approx (1 - R^2)var(\bar{y}_T - \bar{y}_C)$, where R^2 is the proportion of the variance in Y_i explained by the baseline characteristics (X_i) in the OLS estimation of Equation (A.2) below:

$$Y_i = X_i \beta + e_i \tag{A.2}$$

However, as mentioned above, when there are a large number of potential covariates, not all of which are useful in predicting every outcome of interest, the effect of adjustment can be the opposite of the intended effect: variances are increased rather than decreased. To avoid unnecessary variance inflation, the analyst needs to drop or otherwise reduce the influence of extraneous covariates that do not have a strong influence on the outcome of interest.

Simulation research (Judkins 2019) showed that dropping (with "backward selection") or downweighting covariates⁷ based on simple analyses of the same data used in the evaluation yields slightly biased estimates of the variance of the estimated treatment effects (but still

Mathematically, the presence of extraneous variables causes the coefficients of the true determinants of the outcome to be less accurately estimated. For example, if the best prediction model is Y = 2X but the model is fit with many extraneous covariates, the fit prediction formula could easily end up having coefficients of 1.9 or 2.1 for X instead of the best value of 2. If the wrong slope is used to correct for a treatment-control imbalance in X, the adjusted estimate of impact can easily be worse than an unadjusted estimate of impact.

An example of a method that downweights covariates is the "modified Koch method" developed for and used in the first round of PACE reports (Judkins, Fein, and Buron 2018; Koch et al. 1998).

unbiased estimates of the treatment effect itself). This bias is negative, meaning that the variance estimates are slightly too small, making confidence intervals for impact estimates misleadingly narrow and hypothesis tests too likely to conclude that a nonzero impact has occurred when the true impact is zero or negative.

To select covariates in a manner that does not compromise variance estimation, we use the relatively recently developed technique "least absolute shrinkage and selection operator" (LASSO) with "10-fold cross-validation." With the LASSO, the sum of absolute values of the estimated regression coefficients in Equation (A.2) is constrained to be less than a preselected value (the "constraint"). If the value for this constraint is small enough, many coefficients in Equation (A.2) will be forced to zero to fit within the cap on the sum of absolute coefficient values and thus can be removed from the list of baseline covariates. The 10-fold cross-validation is used to optimize the value of the constraint, rather than just relying on an arbitrary choice for it.

Details of the procedure are as follows.

- (1) With 10-fold cross-validation, the sample (both treatment and control group members) is divided into 10 equal and mutually exclusive random subsamples.
- (2) For each of a range of candidate values of the constraint, the LASSO procedure is run to select covariates on a sample in which one of the 10 subsamples has been dropped.
- (3) The model in Equation (A.2) is fit on the same sample using just the variables selected in the second step for each of the candidate values of the constraint.
- (4) The model is used to create out-of-sample predictions of the outcome for everyone in the dropped piece of the sample, and the prediction error $\hat{Y}_i Y_i$ is measured for each of the candidate values of the constraint.
- (5) Steps 2 through 4 are repeated 10 times for each candidate value of the constraint. On each iteration, a different one of the 10 subsamples is dropped. In this manner, out-of-sample prediction errors are obtained for the entire sample.
- (6) Mean squared prediction errors across all 10 replicates are then calculated for each of the candidate values of the constraint.
- (7) The value of the constraint that minimizes this cross-validated mean squared prediction error and thus captures most of the variation reduction possible with the available

If the sample size is very large, the estimated variance on the estimated effect of treatment will be nearly unbiased even if the evaluation data are used to cull or downweight extraneous covariates. However, simulations clearly show that PACE sample sizes are not large enough to avoid biased variance estimates if "backward selection" on local data is used to prune covariates or if the modified Koch method is used to downweight extraneous covariates. Accordingly, impact analyses at three years for VIDA and all other PACE local programs are not using the modified Koch method used in the initial round of reports covering the first 18 months of follow-up.

⁹ See Bühlmann and van de Geer (2011) for a full explanation of these techniques.

covariates is selected as the optimal constraint.¹⁰ Whichever variables have nonzero coefficients in the model for that optimal constraint are used as covariates in the impact regressions. All other baseline characteristics are discarded. All of this is done automatically in SAS/GLMSELECT. Simulations out under PACE-like conditions (in terms of sample sizes and the numbers of covariates) when developing the analysis plan for entire suite of PACE three-year reports (Judkins et al. 2018) demonstrate that this technique reduces the true variances without biasing variance estimates.¹¹

In principle, we could repeat the LASSO with 10-fold cross-validation independently for every outcome for each of the nine PACE programs. But such an approach would produce a different final covariate list for each outcome and program, leading to some loss in transparency and making it harder for outside researchers to replicate the PACE results. At the other extreme, we could run the LASSO just once for each program for the most important confirmatory outcome and then use the resulting set of selected covariates for all impact estimates for the program. But we believe that this would result in more precision loss than can be justified for the sake of transparency.

As a compromise between these extremes, we selected one set of covariates for each of three domains and customized them for each of the nine PACE programs. The three domains are (1) analyses of **employment and earnings** outcomes that are conducted on the dataset of merged data from the three-year follow-up survey and the National Directory of New Hires (NDNH); (2) analyses of **educational progress** outcomes (whether based on the survey, NSC, or local or state college records); and (3) analyses of all **other** outcomes (most of which concern personal and family well-being and economic independence). The pool of potential covariates was the same for all three domains—with one important exception: indicators of pre-baseline earnings based on NDNH data are only allowed in analyses of NDNH-based outcomes.¹²

To identify covariates for this report, we ran the LASSO procedure for the most salient outcome within each of the three domains (earnings, educational progress, other) at each of the nine PACE programs.¹³ For NDNH analyses, the confirmatory outcome is *average quarterly earnings* for the 12th and 13th quarters after randomization (Q12, Q13), so that is a natural choice for the outcome around which to optimize covariate selection. In the educational progress domain, the most important outcome varies by PACE program. As discussed in the main report, for VIDA the

One could simply use the LASSO to select covariates with a pre-specified value of the constraint, but the 10-fold cross-validation provides a principled method for selecting the constraint.

¹¹ See Judkins (2019) for additional detail.

This is because we analyzed survey outcomes on Abt's secure server rather than on the ACF secure server. Though both systems have very high security procedures, agreements with the Office of Child Support Enforcement (OCSE) permit the NDNH data to reside only on the ACF secure server. It would have been possible to analyze all survey outcomes on the ACF secure server, but doing so would have significantly burdened the study's analytic operations without any commensurate benefit. It would also prevent us from analyzing survey data for people whose names and Social Security numbers do not properly match the Social Security Administration's records.

Selection started with the set of baseline covariates used in the analyses of follow-up data at 18 months after random assignment for the short-term impact report (shown in Exhibit A-3 below).

most salient education outcome is *receipt of either a degree or a certificate requiring a year or more of college study* (confirmatory). As the most salient outcome for the third domain (other), we selected *whether anyone in the household draws means-tested public benefits*. We made this last decision because of the centrality of the concept of self-sufficiency in the rationale for creating the PACE project.¹⁴ We made these choices prior to reviewing any impact estimates.

In addition to covariates based on the above procedures, regression models included covariates for which baseline distributions differ for treatment and control group members at the 5 percent level. ¹⁵

Exhibit A-3 shows the covariates that we selected with the LASSO procedure. Some covariates were selected both by the LASSO and by virtue of being out of balance (OOB) at baseline. These covariates are flagged as such in the table. For categorical variables, the LASSO procedure worked on dummy variables for the individual levels; so for a variable with four levels, it was possible for just one of three dummy variables to be selected. In contrast, the OOB test selected all or none of the levels of a categorical variable. The exhibit shows all possible levels of categorical variables and indicates which specific categories we selected as covariates. So, for example, all but one of the levels for Current Work Hours served as covariates for educational progress outcomes, but only one level of Expected Work Hours served as such.

Exhibit A-3: Covariates Selected, by Outcome Domain

Baseline Covariate	NDNH-Based Employment and Earnings Domain	Educational Progress Domain	Other Domains
Age			
20 or under			
21-24		LASSO	
25-34			
35+			
Female		LASSO	
Race/Ethnicity			
Hispanic, any race			
Black, non-Hispanic			
White, non-Hispanic			
Another race, non-Hispanic			
Family Structure	OOB	OOB	OOB
Not living with spouse/partner and not living with children			
Not living with spouse/partner but living with children			
Living with spouse/partner and not living with children			
Living with spouse/partner and children			
Living with parents			

The original name for PACE was "Innovative Strategies for Increasing Self-Sufficiency." The promotion of self-sufficiency is also central to the framework goals of career pathways as articulated by Fein (2012).

¹⁵ Baseline balance was assessed prior to imputation of missing data. See Exhibit A-2 above.

Baseline Covariate	NDNH-Based Employment and Earnings Domain	Educational Progress Domain	Other Domains
One parent has at least some college			
High School Grades			
Mostly A's	LASSO	LASSO	
Mostly B's			
Mostly C's or below			
Current Education	OOB	OOB	OOB
High school diploma or less			
Less than one year of college			
One or more years of college	LASSO	LASSO	LASSO
Associate degree or higher	LASSO	LASSO	LASSO
Career Knowledge Index			
Family Income in Past 12 Months			
Less than \$15,000			
\$15,000-\$29,999			
\$30,000+			
Pre-Randomization Quarterly Earnings (NDNH)		Not available	Not available
4 quarters prior to randomization			
3 quarters prior to randomization	LASSO		
2 quarters prior to randomization			
1 quarter prior to randomization			
Psycho-Social Indices			
Academic Discipline Index			
Training Commitment Index			
Academic Self-Confidence Index	LASSO	LASSO	LASSO
Emotional Stability Index			
Stress Index		LASSO	
Life Challenges Index			LASSO
Public Assistance/Hardship Past 12 Months			
Received WIC or SNAP			LASSO
Received public assistance or welfare			
Reported financial hardship		LASSO	
Current Work Hours	OOB	OOB	OOB
0-19			
20-34			
35+			LASSO
Expected Work Hours in Next Few Months			
0-19			
20-34		LASSO	
35+			LASSO
Plan to attend school only part-time if admitted to VIDA			

Key: SNAP=Supplemental Nutrition Assistance Program. WIC=Special Supplemental Nutrition Program for Women, Infants, and Children. Note. "LASSO" flags that the covariate was selected by the LASSO for variance reduction. "OOB" flags that the covariate was selected because it was significantly out of balance.

Exhibit A-4 shows impacts on selected confirmatory and secondary outcomes before and after regression adjustment without weights. ¹⁶ The two sets of estimates lead to similar conclusions, and the majority of the regression-adjusted standard errors (nine out of 16) are no larger than the unadjusted standard errors.

Exhibit A-4: Comparison of Confirmatory and Secondary Impact Estimates Unadjusted and Adjusted for Baseline Imbalances

Outcome	Impact (Unadjusted Estimate)	Standard Error	Impact (Adjusted Estimate)	Standard Error
Confirmatory Outcomes (NDNH and College Records)		Full S	ample	
Average quarterly earnings Q12-Q13 after randomization (\$)	-243	373	-341	352
Any college degree or certificate requiring 1 year or more of study earned by month 36 (%)	11.5***	3.2	9.4***	2.9
Secondary Outcomes: Education (College Records)		Full S	ample	
Number of college credits earned by month 36	7.6***	1.5	6.4***	1.5
Full-time-equivalent months enrolled at any school (months)	2.5***	0.5	2.2***	0.5
Any degree or certificate earned by month 36 (%)	14.2***	3.1	12.7***	2.9
Any degree earned by month 36 (%)	8.5***	3.1	7.3***	3.0
Secondary Outcomes: Employment (Survey)	Surv	ey Responder	າts without Weiວຸ	ghts
Employed at survey follow-up (%)	-1.0	3.6	-1.9	3.5
Employed and earning \$17.50 per hour or more (%)	4.8*	3.4	3.9	3.3
Employed in a job requiring at least mid-level skills (%)	6.4**	3.7	5.0*	3.5
Secondary Outcomes: Education (Survey)	Surv	ey Responder	າts without Weiວຸ	ghts
Receipt of an exam-based certification or license (%)	5.3*	3.9	4.4	3.9
Secondary Outcomes: Other (Survey)	Surv	ey Responder	າts without Weiວຸ	ghts
Indicators of Independence and Well-Being				
Has health insurance coverage (%)	-0.3	3.6	-0.6	3.7
Receives means-tested public benefits (%)	-4.6	3.8	-3.9	3.7
Personal student debt (\$)	-442	643	-505	652
Any signs of financial distress (%)	-2.5	3.7	-1.4	3.7
Intermediate Outcomes (Scales)				
Confidence in career knowledge ^a	0.01	0.04	-0.01	0.04
Access to career supports ^b	0.05***	0.02	0.04**	0.02
Sample sizes (across treatment and control groups): College Records 958 NDNH 955 Survey 724				

Source: VIDA partner college records; PACE three-year follow-up survey; National Directory of New Hires.

Statistical significance levels, based on one-tailed *t*-tests of differences between research groups: *** 1 percent level; ** 5 percent level; * 10 percent level.

a Seven-item scale tapping self-assessed career knowledge; response categories range from 1=strongly disagree to 4=strongly agree.

^b Six-item scale tapping self-assessed access to career supports; response categories range from 1=no to 2=yes.

We did not use the weights in the preparation of this exhibit because they are not required for the first row (Full Sample), and because in this section we want the focus to be on the role of covariates. See Appendix Exhibit C-10 for the impact of nonresponse-adjustment weights on these estimates.

Appendix B: College Records Data

This appendix explains the data sources and strategy for measuring the confirmatory outcome (receipt of a college credential requiring a year or more of study) as well as other important college outcomes. It discusses the decision to base most such measures on records from local colleges located in the Lower Rio Grande Valley, 17 rather than on potential alternative sources such as the three-year follow-up survey and the National Student Clearinghouse (NSC). This decision is explained in Section B.1. Section B.2 discusses the specification of outcomes constructed from the college records.

In addition to preparing impact estimates with the college records data, we also prepared alternative impact estimates using NSC data and survey data. See Appendices D and E, respectively, for these sensitivity analyses.

B.1 Rationale for Use of Local College Records

The local college records offer several advantages over other potential sources for defining college education outcomes. For study participants who enrolled in one of the local colleges, the records provide complete data on enrollment and credentials for all participants. This is a key advantage over the follow-up survey, which covers only respondents and may be subject to response bias or recall error. Moreover, credential duration is classified by the colleges, allowing us to accurately distinguish credentials requiring a year or more from shorter-duration credentials. This is an important advantage over the NSC credential data, which does not have sufficient information to categorize credentials as taking less than or more than a year to complete.

A limitation of the local college records is that they do not cover credentials earned at other schools. If a large share of VIDA participants attended other schools, then outcomes based on local college records would underestimate credential attainment. Importantly, if attendance at other schools differed between the treatment and control groups, then our impact estimates could be biased.

However, analysis of NSC records showed that the vast majority of participants who enrolled in college attended only one of the local colleges, with similar proportions for both the treatment and control groups (Exhibit B-1 below). Less than 5 percent of those with college attendance attended schools not covered by the local college records. This gives us high confidence that the local college records provide unbiased, near-universal coverage of college attendance of VIDA participants. For these reasons, we decided to use local college records to define the

We obtained records data from four local colleges: South Texas College (STC); Texas Southmost College (TSC); Texas State Technical College (TSTC); and the University of Texas Rio Grande Valley (UTRGV). UTRGV was established in 2015, following a merger of the University of Texas Brownsville and the University of Texas Pan-American; the records received from UTRGV include pre-2015 records from both predecessor schools.

confirmatory education outcome and other college outcomes without imputing for attendance at other colleges.¹⁸

Exhibit B-1: National Student Clearinghouse–Reported Enrollment at Local Colleges and Other Colleges by Study Group for the VIDA Evaluation Sample

Group	At Local Colleges (%)	ges Colleges Colleges		Enrolled Only at Other Colleges (%)	Total Ever Enrolled (%)
At Three Years					
Treatment	99.5	95.8	3.7	0.5	100.0
Control	99.6	96.2	3.3	0.4	100.0
T-C difference	-0.1	-0.4	0.4	0.1	

Source: National Student Clearinghouse.

Note: NSC data are available for a longer period, but for this table we used only NSC data on the 35 months following the month of randomization.

B.2 Specification of College Records–Based Outcomes

Each of the local colleges provided two types of information: course-level data and credential-level data. The specific information available in each of these data files is as follows:

Course-level Data. These data include detailed information on courses in which students enrolled since randomization. Key data fields are:

- course type (academic, vocational, developmental);
- course start and end dates;
- number of credits possible/earned; and
- grade (either letter grade or pass/fail).

Credential-level Data. These data include information on college credentials received since randomization. Key data fields are:

- Credential type:
 - level 1 certificate: a short-term certificate requiring less than one year's worth of credits:
 - level 2 certificate: a longer-term certificate requiring one year or more's worth of credits;
 - associate degree; and

¹⁸ For several other PACE sites that used data from college records, a larger share of participants attended other colleges. At these sites, we imputed for attendance at these other colleges. For VIDA, because few participants attended other colleges, and the rate of that attendance was similar for treatment and control groups, we did not impute for attendance at other colleges.

- o bachelor's degree.
- Credential name; and
- Credential award date.

We combined course-level and credential-level data across all the local colleges to construct the college education outcomes. The specification of these outcomes is shown in Exhibit B-2.

Exhibit B-2: Details on Specification of College Records-Based Education Outcomes

Outcome	Specification
Confirmatory Outcome	
Received college credential requiring 1 year or more of study	Receipt of a level 2 certificate, associate degree, or bachelor's degree.
Secondary Outcomes	
Received associate degree or higher	Receipt of an associate degree or bachelor's degree.
Received any college credential	Receipt of a level 1 certificate, level 2 certificate, associate degree, or bachelor's degree.
FTE months enrolled in college	For each month of enrollment, determine the total number of enrolled credits across all courses in that month. Convert to FTE months as follows: 12 credits = 1 FTE month 9 to 11 credits = 0.75 FTE month 6 to 8 credits = 0.5 FTE month 1 to 6 credits = 0.25 FTE month Sum across all months to get total FTE months enrolled in college.
Number of college credits earned	Number of credits earned in college academic or vocational courses.
Exploratory Outcomes	
Received level 1 college certificate	Receipt of a level 1 certificate.
Received level 2 college certificate	Receipt of a level 2 certificate.
Any full-time enrollment	Any month with 12 or more enrolled credits.
Any part-time enrollment	Any month with 1 to 11 enrolled credits.

Key: FTE (full-time-equivalent).

Note: Outcomes are defined for particular time period (e.g., within three years of randomization) and are constructed using only the courses and credentials that occur during those periods.

Appendix C: Three-Year Survey Data

This appendix documents key technical detail underlying analyses of the three-year follow-up survey data for VIDA. ¹⁹ Section C.1 documents coding for scales based on follow-up survey data. Section C.2 describes the imputation process for some missing survey data elements in the construction of outcomes. Section C.3 analyzes survey nonresponse and documents the process we used to build the nonresponse weights used in the impact analysis. Sections C.4 and C.5 present evidence about the quality and completeness of survey responses. Before getting into those details, we provide an overview of the measurement goals and structure of the instrument.

Broadly speaking, the survey attempted to collect a complete history of jobs and periods of schooling since randomization (including the progression and interleaving of these spells), credits and credentials earned, earnings growth, and self-employment. In addition, the survey measured 21st century skills, family formation and growth, income and material well-being, and child outcomes.

The Integrated Training and Employment History module of the three-year survey aimed to collect a complete history of training and employment between each study participant's randomization and the day of interview three years later. Given data collection plans, the approach needed to work over the phone. The instrument development team reviewed several past efforts to collect such histories, but only one of the past approaches seemed likely to be workable over the phone—an approach developed for a German survey instrument that studies the training and work histories of German youth.²⁰ This was the first time that the German approach had been attempted in the United States.

Conceptually, a history could be built either forward from randomization or backward from the day of interview. The German study worked forward with apparent success, so we adopted that approach. One modification we made was to take each respondent through his or her training and employment history twice instead of just once. First, the survey collects the spell history (dates, whether work or school, and place names). This is the "scaffolding." Once the scaffolding has been built, the interviewer takes the respondent back through the history a second time to systematically collect more information about each training spell.

The full instrument is available at http://www.career-pathways.org/career-pathways-pace-three-year-instrument/.

The 2011 BIBB Transitional Study was a retrospective longitudinal survey conducted by the Bundesinstitut für Berufsbildung ("Federal Institute for Vocational Education and Training") on a representative basis that recorded in detail the whole of the educational and occupational biographies of persons born between 1987 and 1992 and resident in Germany. For full details: Beicht and Friedrich (2008). For a brief English synopsis of one report using some of the survey data: http://www.bibb.de/en/64317.htm.

There are two motivations for this two-pass approach.

- (1) By asking the respondent to focus on one type of information at a time, collection of date data may be more consistent across spells.
- (2) This approach allows more-straightforward programming.

C.1 Measures Based on Follow-up Survey Data

Exhibits in this section detail the operationalization of survey-based outcomes used in impact analyses in the main report. These exhibits provide details on the operationalization of each survey-based outcome for which impact estimates are presented in the main report. These exhibits also reference the underlying survey questions. Exhibit C-1 provides details on outcomes in the education domain, as reported in Chapter 3. Exhibit C-2 provides similar details on outcomes in the employment/earnings domain as reported in Chapter 4. Finally, Exhibits C-3, C-4, and C-5 do the same for career knowledge and supports outcomes, other life outcomes, and parenting and child outcomes, respectively, as reported in Chapter 5.

Exhibit C-1: Details on Specifications for Survey-Based Education Outcomes in Chapter 3

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Secondary Outcomes		
Received exam- based certification or license	Respondents were asked whether they had "received a professional, state, or industry certification, license, or credential from an authority other than a school." This measure uses the 18-month survey for exam-based credentials reported through the time that survey was completed and uses the three-year survey for exam-based credentials that were reported to be earned after completion of the short-term survey.	3-year: I3d, I3di, I3h 18-month: A56, A56a

Exhibit C-2: Details on Specifications for Survey-Based Employment/Earnings Outcomes in Chapter 4

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Secondary Outcomes		
Employed at survey follow-up	Determined based on reported dates of jobs and date of interview.	Most of modules B, C, and E
Employed and earning \$17.50 per hour or more	Analyzed response to survey question for control group. Selected \$17.50 per hour as the threshold because it was close to the 60th percentile of hourly wages among employed control group members. This percentile was picked as being a reasonable goal for graduates of VIDA.	F5
Employed and working in a job requiring at least mid- level skills	Three open-ended questions about the kind of work done, the usual activities completed, and the job title were coded into an SOC code. We then looked up the Job Zone ^a for each SOC code in the O*NET system. ^b Job Zone 3—occupations that need medium preparation—seemed a reasonable goal for graduates of VIDA.	G2a, G3, G4

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Exploratory Outcome	s	
Employed and working in a job closely related to training	Respondents chose from three options to a question about alignment of job to training: "Closely related," "Somewhat related, or "Not related." This question was asked of all employed persons even if they had no postsecondary training.	G11
Employed and working at least 32 hours per week	Currently employed respondents were asked about their typical hours worked.	F6
Employed and working straight day, evening, or night shifts	Currently employed respondents were asked about their typical work schedule. Answer possibilities included "straight shifts," "rotating shifts," "split shifts," "irregular schedules," and "other."	G6, G6a
Employed and working in a job that offers health insurance	Currently employed respondents were asked whether health insurance was available through the employer as a fringe benefit.	G8a
Employed and working in a job with supportive working environment	Questions about job benefits and conditions were used to cluster jobs into three categories. Jobs in this category generally provided employees with flexibility to balance work and family, a supportive set of co-workers and supervisors, a rich set of benefits, and opportunities for advancement.	G7, G8a-G8e, G9, G10

Key: SOC=U.S. Department of Labor Standard Occupational Classification.

^a https://www.onetonline.org/help/online/zones [accessed September 12, 2016].

b https://www.onetonline.org/ [last accessed September 12, 2016]. There are five Job Zones. A Job Zone is a group of occupations that are similar in education needed to do the work, related experience needed to do the work, and amount of on-the-job training needed to do the work. Job Zone 3 is described in the O*NET system documentation as "Employees in these occupations usually need one or two years of training involving both on-the-job experience and informal training with experienced workers. A recognized apprenticeship program may be associated with these occupations."

Exhibit C-3: Details on Specifications for Survey-Based Career Knowledge and Supports Outcomes in Chapter 5

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Secondary Outcomes		
Access to career supports	This was a new scale created for PACE at 18-month follow-up. It is a sixitem scale counting number of types of career-supportive relationships in workforce and education settings. The motivation for creating this scale was the theory that richer social networks are one of the benefits of higher education (e.g., Goldrick-Rab and Sorensen 2010).	K4
	Say you need advice or help in taking a next step on a career pathway of interest to you. Please tell me if there is anyone you'd be comfortable turning to:	
	Who has a college degree?	
	 Who is currently going to college? Who works at a local college, either as a teacher or staff member providing help to applicants or students? 	
	 Who works for a local community organization helping people find education and training, work, and related supports? Who works in an occupation of interest to you? 	
	 Who has a management job in a work setting matching your career interests? 	
Confidence in career knowledge	This seven-item scale was based on a review of six survey instruments as well as literature. The first two scale items (a, b) were adapted from the Career Decision Self-Efficacy–Short Form (Betz and Taylor 2001). Three items (d-f) were adapted from the Career Exploration Survey (Stumpf, Colarelli, and Hartman 1983). Two items (c, g) were new and written specifically for the PACE Basic Information Form. Response categories ranged from 1=strongly disagree to 4=strongly agree.	K6
	a. You know how to accurately assess your abilities and challenges?b. You know how to make a plan that will help achieve your goals for the next five years?	
	c. You know how to get help from staff and teachers with any issues that might arise at school?	
	d. You know the type of job that is best for you?	
	e. You know the type of organization you want to work for?f. You know the occupation you want to enter?	
	g. You know the kind of education and training program that is best for you?	

Exhibit C-4: Details on Specifications for Survey-Based Family Economic Well-Being Outcomes in Chapter 5

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Secondary Outcomes		
Has health insurance coverage	Includes the offer of healthcare by employer or actual receipt if not offered by employer.	G8a, M12
Receives means- tested public benefits	Respondents were asked whether they or anyone else in their household received TANF, SNAP, WIC, Medicaid, subsidized childcare, Section 8 or Public Housing, LIHEAP, or FRPL.	M3a, M3b, M3c, M3e, M3f, M3g, M3h, M3i
Any signs of financial distress	For the three-year follow-up, this measure is an expanded version of the financial hardship measure used in 18-month follow-up. It is a binary variable where 1=any signs of financial distress in terms of troubles paying bills (rent/mortgage, gas/oil/electricity), utility disconnects (gas/electric/oil or telephone), delayed healthcare, delayed dental care, delayed prescription drug procurement, not having enough to eat (sometimes or often), or not having enough money to make ends meet at the end of the month. 0=none.	M9a-g, M10, M11
Personal student debt	Respondents were asked about personal borrowing to go to school since randomization. For those who had difficulty answering the question about the exact amount, a categorical response option was offered. These were then imputed to continuous levels.	M6, M6a
Exploratory Outcomes	\$	
Personal income	Respondents were first asked to provide an open-ended amount for the prior month, specifically excluding income tax refunds. If no answer was given, the respondent was asked to choose one of seven bracketed amounts. Item nonresponse was multiply imputed. Exact amounts were also multiply imputed for people who chose a bracket.	M2, M2a
Household income	Respondents were first asked to provide an open-ended amount for the prior month, specifically excluding income tax refunds, where the household was clarified to include anyone who lived in the household for at least half of the prior month. If no answer was given, the respondent was asked to choose one of seven bracketed amounts. Item nonresponse was multiply imputed. Exact amounts were also multiply imputed for people who chose a bracket.	M4, M4a
	People who lived alone were not asked this question. Instead, their personal income was assumed to equal the household income.	
Unsecured debt of \$5,000 or more	Respondents were asked about debt other than student debt and secured debt (such as mortgages or title loans). Debts in the name of their spouse or partner were included.	M8
Parental student debt	Respondents were asked about borrowing by a parent on their behalf to go to school since randomization. For those who had difficulty answering the question about the exact amount, a categorical response option was offered. These were then imputed to continuous levels.	M7, M7a
Adequacy of food for household	Respondents were asked about adequacy of household food over prior six months. The possible responses were 1=Enough of the kinds of food you want. 2=Enough but not always the kinds of food you want. 3=Sometimes not enough to eat. 4=Often not enough to eat. Responses of 1 or 2 counts as not having experienced food insecurity.	M10
EITC claimant	Respondents were asked about actual or intended claim of the Earned Income Tax Credit (EITC) for the prior tax year.	M5

Outcome	Outcome Details on Derivation of Outcome	
Dependent on family	If the respondent reported cash transfers in the prior month from friends or family outside the home or living rent-free with friends or family.	M1k, M13
Homeowner	Reports current living situation is "own your own home."	M13
Homeless	Reports that current living situation is group shelter or gives an open- ended answer that indicated respondent lived in a place not meant for human habitation or a homeless shelter, or couch surfed (slept on couches at various friends' houses).	M13
Not living with spouse/partner or children	Respondents were asked about other people who live in the household at least half the time. We treated spouses and unmarried partners the same. Only own children and those of partner/spouse were counted.	L1a, L1b, L1c
Not living with spouse/partner, living with children	Respondents were asked about other people who live in the household at least half the time. We treated spouses and unmarried partners the same. Only own children and those of partner/spouse were counted.	L1a, L1b, L1c
Living with spouse/partner, not living with children	Respondents were asked about other people who live in the household at least half the time. We treated spouses and unmarried partners the same. Only own children and those of partner/spouse were counted.	L1a, L1b, L1c
Living with spouse/partner and children	Respondents were asked about other people who live in the household at least half the time. We treated spouses and unmarried partners the same. Only own children and those of partner/spouse were counted.	L1a, L1b, L1c
Living with parents	Parents of either the respondent or any spouse/partner were counted.	L1e
Living with spouse	Unmarried partners were not counted.	L1a
Living with spouse/partner	Unmarried partners were classified same as spouses	
Had child since random assignment or currently pregnant	Only women were asked about recent births and current pregnancy	L4, L5
Number of children currently living with respondent	Only children for whom the respondent or spouse/partner was the legal guardian were counted	L3

Key: EITC=Earned Income Tax Credit. FRPL=free or reduced-price lunch. LIHEAP=Low Income Home Energy Assistance Program. SNAP=Supplemental Nutrition Assistance Program. TANF= Temporary Assistance for Needy Families. WIC=Special Supplemental Nutrition Program for Women, Infants, and Children.

Exhibit C-5: Details on Specifications for Survey-Based Parental Engagement and Child Outcomes in Chapter 5

Outcome	Details on Derivation of Outcome	Follow-Up Survey Question(s)
Exploratory Outcome	es	
All Children (Ages 0-	18)	
Parent believes child will graduate college	Parent asked how far child will go in school. 1=parent reports child will finish college or if parent reports child will earn advanced degree after college; 0 otherwise.	P1
Highly engaged parent	This is a new scale developed for the three-year evaluations of PACE and HPOG 1.0. It was based on imputed average hours of time per day spent with the child in the typical week. The algorithm was different for preschoolers versus school-age children. Both thresholds were set at the 75th percentile for all children in the pooled evaluation samples for PACE and HPOG 1.0.ª	O3a, O4a, O5a, O6a, O7a, O7b, O7c, P3, P6
	For preschoolers, parents were credited with 1 hour for each shared breakfast in the typical week; 1 hour for each shared dinner; 7 hours if they usually put the child to bed; and 1.5 hours if they read to the child once or twice a week, 4.5 hours if they read to the child three to six times a week, and 7 hours if they read to the child every day. These hours were summed and then divided by 7. The maximum value was 4 and the 75th percentile was 3.64. If the quotient was greater than this percentile, the parent was said to be highly engaged with the preschooler.	
	For school-age children, parents were credited with 1 hour for each shared breakfast in the typical week, 1 hour for each shared dinner, 7 hours if they usually put the child to bed, 7 hours if they were usually present before the child leaves for school, 7 hours if they were usually present after the child comes home from school, 7 hours if they were usually present after dinner, and 7 hours if they were present with the child during the weekend. These hours were summed and then divided by 7. The maximum value was 8 and the 75th percentile was 7.28. If the quotient was greater than this percentile, the parent was said to be highly engaged with the school-age child.	
Parent self-efficacy for helping child navigate school	Existing scale. ^b The seven-item scale captures parents' beliefs about their capability to help their child succeed in school. Response categories ranged from 1=disagree very strongly to 6=agree very strongly.	P9
School-Age Children	,	
Child repeated any grades	Yes/no question if child repeated any grades in school.	Q10
Days child late for school last month	How many days was child late for school in last month (if in summer vacation, asked about last month child was enrolled in school).	Q12
Days child absent from school last month	How many days was child absent from school in last month (if in summer vacation, asked about last month child was enrolled in school).	Q11

^a ACF's Health Profession Opportunity Grants (HPOG) Program, like the PACE project, provides training to low-income adults, but specifically for healthcare occupations. A first round of grants was awarded in 2010 (HPOG 1.0). Three of the nine programs studied in PACE were HPOG 1.0 grantees. For more: https://www.acf.hhs.gov/ofa/programs/hpog.

^b Walker et al. (2005).

C.2 Imputation in the Three-Year Survey

As in any survey, some respondents did not answer every question. We used a variety of approaches to allow us to use these cases despite their partial responses. Our approach varied across questions, depending on whether the question was embedded in a sequence of questions in which all questions needed to be answered to calculate the value of a scale, whether the question was embedded in a block of unanswered questions, and the frequency of nonresponse to the question.

The default rule was to drop persons who left the question unanswered from any analysis involving that question, but to include them for all other analyses. Where this rule would result in a sharp drop in sample size—either for the question by itself or for a scale involving the question—then we imputed responses for people who failed to answer the question. Additionally, we imputed blocks of responses for two groups of people: those with large blocks of missing data and those who appear, based on administrative data, to have failed to report one or more education spells.

The goals of imputation were variance and bias reduction. Both goals are achievable with the rich set of parallel outcomes measured in the three-year survey. For example, indications of problems paying bills is valuable information for imputing missing income. We made decisions for all PACE sites on a global basis. Either we implemented an imputation procedure for a question in all nine PACE sites, or we left the question blank in all sites. Specifically, we imputed seven types of missing data:

- (1) number of college credits;
- (2) credential award dates;
- (3) income (personal and household);
- (4) early certifications and licenses (first 18 months after randomization);
- (5) skipouts (i.e., missing data on spells caused by trying to avoid respondents ending the survey);
- (6) spell start and end dates (job spells and school spells); and
- (7) survey data on school spells reported to the National Student Clearinghouse (NSC) but not by respondent.

This section briefly describes each of these imputations and their prevalence. We used a common methodology for the first four types of missing data. Section C.2.1 provides the detail on these imputations. Section C.2.2 gives details on the imputation methodology for the other three types of missing data.

Types and Rates of Imputation. Exhibit C-6 below lists the seven types of imputation and shows the imputation rates for the survey respondents in the evaluation sample for VIDA. The instrument asked about credits spell by spell. It was fairly common for respondents to be unable to recall the number of credits they had earned during one or more training spells. They also had trouble recalling the dates on which they received credentials. Income was also frequently

missing. The instrument prompted respondents to give a categorical answer ("bracketing") if they could not give an exact figure.

Exhibit C-6: Imputation Rates among Survey Respondents in VIDA

Type of Imputation	Job Spells (%)	School Spells (%)	Credentials (%)	People (%)
Number of college credits	n/a	n/a	n/a	19.2
2. Credential award dates	n/a	n/a	1.7	n/a
3. Income				
Personal (categorical)	n/a	n/a	n/a	3.5
Personal (exact)	n/a	n/a	n/a	4.6
Household (categorical)	n/a	n/a	n/a	8.6
Household (exact)	n/a	n/a	n/a	11.2
4. Early certifications and licenses	n/a	n/a	n/a	7.9
5. Skipout	6.6	7.1	6.3	6.4
6. Spell start and end dates (job, school)	6.3	4.9	n/a	n/a
7. Survey data on school spells reported to NSC but not by respondent	n/a	3.9	1.7	3.2

Key: n/a=not applicable.

Source: PACE three-year follow-up survey.

Note: Exact income was missing more often than categorical income because respondents unable or unwilling to provide an exact amount were encouraged to report a bracketed amount.

The "Early Certifications and Licenses" row refers to our decision to impute this outcome for the 18-month follow-up survey for those study participants who were not interviewed at 18 months after randomization but who were interviewed at three years. This imputation allowed us to create a dual-wave composite scale that uses the first interview to measure receipt in the first 18 months and the second interview to measure receipt in the second 18 months. Section C.4 provides information about the rationale for this composite scale.

The "Skipouts" row refers to block missingness in the Integrated Training and Employment History module. The German survey upon which this module was modeled experienced a high level of breakoff (12 percent; see Beicht and Friedrich 2008), meaning people discontinued the interview midstream and declined to restart it. To prevent similar problems for this three-year analysis, the PACE survey added a skipout feature in the module. If a person refused to answer any question in the module or gave a response of "don't know" to any of several critical flow-controlling questions in the module, the interview flow automatically skipped ahead to the next modules (e.g., on 21st century skills, family structure, income and material well-being, and child outcomes). With this approach, complete interview breakoffs were nearly eliminated, but a large block of missing data was created for about 7 percent of respondents (across the entire

The original intent was not to skip past questions about credential attainment and current job conditions, but a mistake in the specifications caused these sections to also be skipped.

three-year sample) and 6.4 percent of VIDA respondents. Though much lower than the breakoff rate on the German study, this is still high enough to require special attention.

Nonresponse was non-negligible for start and end dates of both job and school spells, particularly start dates. This is not surprising given that the reference period was up to three years long (and longer for people interviewed later in the survey period and for spells that started prior to randomization).

The final row of Exhibit C-6 refers to an adjustment for undercoverage of NSC-reported spells. This adjustment started with a match of survey reports with administrative data on college attendance from NSC. We flagged respondents who had spells of college attendance according to NSC but who did not themselves report any training (college or other type of school) since randomization. Although NSC is not error free, its enrollment coverage is generally high (see Appendix D). Accordingly, we imputed all the data from the matched NSC spells to survey respondents who did not report such spells.

C.2.1 College Credits, Credential Award Dates, Income, and Early Certifications and Licenses (Imputations 1-4)

As mentioned above, four of the seven types of imputation used a common imputation procedure: college credits, credential award dates, income, and certifications and licenses in the first 18 months. This section discusses the basic procedures used and provides additional details for each of the four types of missing data.

Core Imputation Procedure. The core imputation methodology involved a number of steps. The first step entailed assembling a list of potential predictors and imputing any missing data in them. ²² The list of potential predictors included program; treatment status; the interaction of program with treatment status; baseline variables; parallel outcomes; and two-way and three-way interactions of both baseline variables and parallel outcomes with program and treatment status.

The second step entailed the use of a cross-validated LASSO procedure to fit a linear model for the target variable in terms of the assembled predictor list.²³ We did this on a pooled dataset that contained respondents from all nine PACE sites (*n*=6,773, of whom 5,910 responded to both follow-up surveys) and, for some imputations, respondents from Health Profession Opportunity Grants (HPOG)-only programs, as well.²⁴ Note that though this procedure allowed program, treatment, their interaction with each other, and their interactions with many other

The only purpose of this imputation was to facilitate automated variable selection in the next step. After we used these imputed values in the predictors to predict new exam-based certifications and licenses as of the time of the 18-month survey, we discarded them. We carried out this imputation with SAS/MI/FCS.

²³ See Appendix A.3 for details on the cross-validated LASSO.

²⁴ ACF's Health Profession Opportunity Grants (HPOG) Program, like PACE, provides training to low-income individuals, but only for healthcare occupations. The impact study of 32 first-round HPOG awardees (HPOG 1.0) included three awardees and one subgrantee (Carreras en Salud) also studied in PACE. For more: https://www.acf.hhs.gov/ofa/programs/hpog.

variables to enter the model, it did not force any of them in. We discuss the implications of this decision after first finishing a description of the procedure.

The third step used predicted values from the final linear model to create a nested set of three partitions for each combination of site and treatment status.²⁵ The finest partition involved splitting the sample into 20 equal-sized groups based on the predicted probability of having reported an exam-based certification or license if respondents had been interviewed at 18 months. The middle partition corresponded to deciles of this same probability, and the coarsest partition corresponded to quintiles of this same probability.

The fourth step used the hotdeck imputation procedure in SUDAAN to randomly match each nonrespondent with a respondent within cells defined by PACE program, PACE treatment status, and the nested partitions. Most cases were matched within cells defined by the 20-level partition. If there were no matches within those cells, then the procedure sought matches within the coarser partitions, first with the 10-level version and then with the five-level version if necessary. If even that did not permit a match, then the procedure randomly matched any unmatched nonrespondents with any respondent in the same PACE program with the same treatment status.

We ran the final hotdeck procedure five times with different random seeds to produce multiple imputations. We used these multiple imputations in the formal analysis runs to add between-imputation onto the naïve variance estimates on the full sample, using Rubin's classic formula.²⁶

We now return to the implications of our decision not to force the interactions of site and treatment group with every other variable in the model. First, it is critical to note that we constrained matches to be from the same site and treatment group. This provided strong protection against imputation-caused bias in the estimated treatment impact. We used the models from the pooled dataset only to guide the matching of respondents and nonrespondents with the same treatment status in the same site. One way to think of this is that we used the pooled dataset to define a distance metric that we then applied within site and treatment group. An alternative procedure would have been to just randomly match respondents and nonrespondents within cells defined by site and treatment group. The point of using a distance metric rather than randomly matching is to reduce variance and the possibility of nonresponse bias. For a site with a large sample size, forcing in all the interactions of site and treatment group with other variables might not cause much deterioration in model quality, but in small sites forcing would almost certainly have made it more difficult to detect subtle main effects.²⁷

Life Trajectory Clusters. The survey contained multiple measures of financial and socialemotional well-being. We theorized that these variables would be useful predictors of several types of missing data, particularly the missing data created by skipouts, because none of these

²⁵ A "partition" of a sample is an exhaustive and mutually exclusive collection of subsets of the sample.

²⁶ See, for example, Rubin (1987).

Algorithmically, the way to force in all interactions is to run the LASSO on a dataset restricted to just the cases in a particular site and treatment group. Even for the largest PACE site, this would not have provided nearly as much power to detect subtle main effects.

questions was involved in the skip pattern mistake. However, interpretation of high-dimensional models is difficult. As a way of incorporating these rich data on well-being into imputation models while still keeping the models fairly easy to interpret, we condensed all these measures into a partition of the sample using cluster analysis. We were able to identify five clusters of respondents that vary clearly in quality of life and core self-evaluation and family dependence. For shorthand, we refer to them as "life trajectory" clusters because one of the variables that they vary on most clearly is a sense of career progress. They are:

- "Overextended"—above average income but also above average financial stress and low scores on psycho-social skills.
- "Family supported"—below average income but strong family supports that protect them from financial stress.
- "Strivers"—strong psycho-social skills and sense of career progress but low income (personal and household) and dependent on public support.
- "Down and out"—very low psycho-social skills, low sense of career progress, severe life challenges, low income (personal and household), and strong reliance on public support.
- "Winners"—strong psycho-social skills and sense of career progress, high income (personal and household), few bill problems, and little dependence on either family or public support.

Missing College Credits

For missing credits, we assembled a rich set of predictors from the baseline forms (the PACE Basic Information Form/BIF and Self-Administered Questionnaire/SAQ), NSC, the 18-month follow-up survey, person-level scales in the three-year survey, and spell-level data from the School Experiences module of the three-year survey. This was a spell-level file pooling data across the nine PACE sites, but not HPOG-only sites as no NSC data were available for the HPOG-only sample. We also added a large number of two- and three-way interactions with site and treatment group. After creating dummy variables for categorical variables, the total number of potential predictors was 1,584.

The LASSO procedure working on this predictor set selected just six variables, yielding a model with an *R*-squared of 27 percent. Four of the six variables were significant predictors with standardized regression coefficients of at least 0.01. They were:

- adjusted spell duration (adjusted for the longest break);
- spell duration interacted with full/part-time student status;
- credits reported at 18 months; and
- NSC-reported full-time-equivalent months of enrollment through 35 months after randomization.

After controlling on these factors, program and treatment were not important nor were any of their interactions with each other or with other predictors. After imputing credits at the spell level, we summed to the person level for respondents with multiple school spells.

Missing Credential Award Dates

On the pooled PACE/HPOG credential sample, we modeled the lag between randomization and credential award date for those respondents with reported award dates (*n*=12,392, with 11,628 responses). The potential predictor list included site, treatment, the interaction of site with treatment, type of credential (10 categories), life trajectory cluster, 20 parallel outcomes at the person level, the lag between randomization and interview, 16 baseline variables, and a large set of two- and three-way interactions with site and treatment group. After creating dummy variables for categorical variables, the total number of potential predictors was 1,160.

The LASSO procedure working on this predictor set selected 14 variables, yielding a model with an *R*-squared of 8.4 percent. The significant predictors with standardized regression coefficients of at least 0.01 were:

- HPOG versus PACE;
- credential was awarded for regular college classes and typically takes less than a year to earn;
- credential is an associate degree;
- credential is a bachelor's degree;
- self-assessed career progress;
- student debt;
- two interactions of HPOG with main effects;
- one interaction of treatment status with a main effect; and
- two 3-way interactions of HPOG status with treatment status with main effects.

After matching nonrespondents with respondents, we adjusted for the difference in randomization dates between the two people, by adding the lag from the respondent to the randomization date for the nonrespondent. If this was past the interview date for the nonrespondent, we truncated the award date to equal the interview date.

Missing Income

The instrument yielded four related measures of income in the past month: (1) exact personal income; (2) categorical personal income; (3) exact household income; and (4) categorical household income. As could be seen in Exhibit C-6 above, missing data rates were considerably higher for the continuous variables than for the categorical variables. This is because categorical income is only missing if both exact (which can be put in the appropriate income category) and categorical income are missing. For prediction purposes, we assembled a person-level file with program, treatment status, the interaction of program with treatment status, self-reported earnings by quarter, 10 variables about economic well-being, four variables about psycho-social skills, nine measures of educational progress, 12 baseline characteristics, and a large collection of two- and three-way interactions with site and treatment group. We used this list for modeling both personal and household income. We ran the LASSO on the pooled PACE/HPOG three-year dataset (*n*=14,467, with 12,782 exact personal income reports and

9,219 exact household income reports). After creating dummy variables for categorical variables, the total number of potential predictors was 1,414.

The LASSO procedure working on this predictor set selected 11 variables for personal income, yielding a model with an *R*-squared of 58 percent. The significant predictors with standardized regression coefficients of at least 0.01 were:

- dummy variables for three of the five life trajectory clusters;
- personal earnings for the 12th quarter after random assignment;
- a dummy variable for having earned an associate degree since randomization;
- a scale for being able to make ends meet at the end of the month; and
- an interaction of earnings with a dummy for receipt of any means-tested public benefits.

For household income, the LASSO procedure selected 26 variables, yielding a model with an *R*-squared of 52 percent. The significant predictors with standardized regression coefficients of at least 0.01 were:

- dummy variables for three of the five life trajectory clusters;
- personal earnings for the 12th quarter after random assignment;
- a dummy variable for being an EITC claimant;
- a dummy variable for living with a spouse;
- a dummy variable for living with parents;
- a dummy variable for living alone;
- annual baseline family income below \$15,000;
- baseline Supplemental Nutrition Assistance Program (SNAP) or Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) receipt;
- a dummy variable for having earned an associate degree since randomization;
- a scale for being able to make ends meet at the end of the month;
- an interaction of earnings with a dummy for receipt of any means-tested public benefits;
- an interaction of personal earnings with living arrangements; and
- three two- and three-way interactions involving program.

Note that neither the model for personal income nor the model for household income involves three-way interactions of program with treatment status that are both statistically significant and substantively large. This does not mean that there are no program effects on income. Rather, it means that the measured parallel outcomes already capture whatever program effects might be present.

Certifications and Licenses in the First 18 Months

As mentioned earlier and as is discussed in detail in Section C.4 below, measures of ever-receipt of certifications and licenses blended reports from the 18-month and three-year surveys. This decision required imputing what nonrespondents²⁸ to the 18-month survey would have reported if they had responded at that time. We used the core imputation procedure described above for this imputation.

On the pooled PACE three-year survey respondent sample (n=6,773 people, of whom 5,906 responded to both the 18-month and three-year follow-up surveys and 867 responded to only the three-year survey), we modeled the receipt of such credentials among those who responded to the 18-month follow-up. The potential predictor list included program, treatment status, the interaction of program with treatment status, and about 40 baseline and three-year follow-up variables. After creating dummy variables for levels of categorical variables, this led to 80 potential predictors in total.

The LASSO selected 10 of the 80 predictors, yielding a model with an *R*-squared of 12.0 percent, a high value for a binary outcome. The selected variables included treatment status, dummy variables for two programs, one treatment-by-program interaction, five measures of educational progress and well-being at three years, and a dummy variable for employment in healthcare at three years. Of these, the predictors with standardized coefficients of at least 0.01 were:

- treatment status;
- one dummy variable for site;
- one treatment-by-site interaction;
- number of certifications and licenses obtained as of the three-year survey;
- report of short-term and long-term college credentials at three years; and
- current employment in healthcare.

After imputing new exam-based certifications and licenses for 18-month survey nonrespondents, we separated exam-based certifications and licenses reported in the three-year survey using the donor's interview date into two categories—early (would have been reported by the nonrespondent in the 18-month survey if the interview had taken place) versus late (would have been earned after the 18-month survey if the interview had taken place). We then created a blended flag for having earned an exam-based certification or license as of the three-year survey. The flag was set to yes if the 18-month nonrespondent had an imputed early exam-based certification or license or had reported a late exam-based certification or license in the three-year survey.

Nonrespondents here were people who could not be located, refused to be interviewed, or were otherwise unavailable for an interview. The concept does not include people who skipped questions about credentials when interviewed at 18 months. We assumed that these respondents did not earn any credentials by the time of the 18-month interview.

C.2.2 Skipout, Start and End Dates, and Unreported School Spells

The remaining three types of missing data required more customized procedures. This section provides details on the approach to each type.

Skipout

We considered several approaches to this type of missing data. One option we considered and rejected was to treat respondents with skipouts as nonrespondents and give them nonresponse-adjusted weights of zero. This simple option would have significantly boosted the overall nonresponse rate and wasted information collected after the skipout. A second rejected approach would have been to treat respondents with skipouts as nonrespondents only for analyses involving educational progress and employment. This option would have required the creation of a second set of nonresponse-adjusted weights and would have led to inconsistencies across analyses. A third rejected option was to impute each outcome and scale requiring any data from the Integrated Training and Employment History module. This option was more attractive but would not have supported estimation of career trajectories.

The approach we adopted was to use a block imputation approach that was initially used in medical expenditure surveys in the United States (Williams and Folsom 1981). The general method involves matching a nonrespondent to a respondent and then copying the entire block of missing data from the respondent to the nonrespondent. Our objective was to find a respondent whose training and employment history would align well with the nonrespondents' baseline characteristics and measures of well-being at three years. (If the matched person had a missing response to a question within the Training and Employment History module, we copied this missing value over the skipout along with all the other variables.)

We used sequential hotdecks as in the core imputation methodology, but we formed the partitions in a different manner. Rather than modeling a single variable and then forming a nested set of partitions based on model-based predictions of that single variable, we crossed the life trajectory clusters discussed above with other important measures. We used a sequence of four hotdecks, where the first had the most stringent criteria for matches, and each succeeding hotdeck had loosened criteria.

The first hotdeck matched nonrespondents to respondents within cells defined by program, treatment status, any schooling reported prior to skipout, any work reported prior to skipout, life trajectory cluster, and lag between randomization and interview in whole months. This was on the pooled PACE/HPOG sample (*n*=14,169, with 13,245 respondents who did not skip out).²⁹ This run found donors for 815 of the 924 skipouts on the pooled dataset.

The second hotdeck replaced program with site. This run found donors for 86 of the remaining 109 skipouts on the pooled dataset. The third hotdeck replaced the exact number of months in the reference period with a dummy variable for whether the number was greater than 38 months. This run found donors for 22 of the remaining 23 skipouts on the pooled dataset. The

This excludes 302 three-year survey respondents who reported no training or employment between randomization and the survey interview.

fourth hotdeck used a collapsed version of self-assessed goal progress in place of life trajectory cluster and the binary recode of length of the reference period. This found a donor for the last remaining skipout.

Given the challenges in matching many of the nonrespondents to appropriate respondents, we did not carry out multiple imputation for skipouts. For the imputation of skipouts, our judgment was that the donor pools would be frequently small and that multiple random matches would, in fact, be the same match over and over. This lack of variation in the matched donors would have rendered variance estimates based on multiple imputations little better than variance estimates based on single imputation.

Because respondents with skipouts were missing a very long stretch of data that are important to many of the secondary outcomes in this report, we prepared impact estimates with and without these cases, as displayed in Exhibit C-7. The two sets of impact estimates are very similar. The imputation allowed us to use as many as 46 more cases for VIDA (about 6 percent of the survey respondent sample), with the exact count depending on item nonresponse.

Imputation of skipouts shifted the examined impacts only slightly. However, in one case (*employed in a job requiring at least mid-level skills*) the imputation shifted the impact across the significance threshold of 10 percent.

Exhibit C-7: Comparison of Selected Impact Estimates of VIDA

Outcome and Sample	Impact Estimate	Standard Error	Sample Size	p-Value
Employed at Survey Follow-Up (%)				
Full sample	-2.4	3.6	724	.754
Omitting skipouts	-3.7	3.7	678	.841
Employed and Earning \$17.50 Per Hour o	r More (%)			
Full sample	3.1	3.5	713	.191
Omitting skipouts	2.9	3.6	668	.213
Employed in a Job Requiring at Least Mic	I-Level Skills (%	o)		
Full sample	5.6*	3.6	707	.061
Omitting skipouts	4.6	3.7	661	.109
Receipt of an Exam-Based Credential (%)	(Blended Versi	on)		
Full sample	2.3	4.1	724	.292
Omitting skipouts	1.9	4.3	678	.326

Source: National Directory of New Hires; National Student Clearinghouse; PACE three-year and 18-month follow-up surveys.

Note: "Full sample" rows include values imputed for skipouts. All estimates are regression-adjusted as discussed in Appendix A Section A.3.

Statistical significance levels, based on one-tailed *t*-tests of positive differences between research groups for positive outcomes and negative differences for negative outcomes (such as student debt), are summarized as follows: *** 1 percent level; ** 5 percent level; * 10 percent level.

Spell Start and End Dates

As mentioned earlier, respondents were frequently unable to remember dates. We decided to impute them to make the most use of the partial information in each respondent's reported history. Our primary objective was to create a high-quality measure of the duration of study over

the entire reference period. Secondary objectives included the ability to estimate quarterly earnings over the entire reference period and supporting a broader set of exploratory analyses of career trajectories (transitions between school, work, and other activities).

For this imputation, we used a different approach from any of those discussed above. This decision was motivated by the complexity of partial information in the Training and Employment History module. Across the pooled PACE/HPOG sample, respondents had as many as six school spells and as many as 11 job spells. Even when respondents could not remember dates, we had many bounding conditions (e.g., spell #4 started after spell #3 ended). We devised a method that would respect these bounding conditions to create a coherent history while also supporting high-quality estimates of the site-specific impact of treatment on duration of study and quarterly earnings.

Before explaining the method, it will be useful to understand bounding conditions.

- For every spell, we knew whether it ended before the three-year follow-up interview or was ongoing at that time.
- For all closed spells, we knew whether there was another spell that started after it but prior to the three-year interview.
- For most spells, we knew
 - whether it started before or after randomization;
 - whether it started in the middle of another spell or after some period during which the person was neither working for pay nor enrolled in school; and
 - whether a new spell started during it.
- For spells that followed other spells, we would most often know the end date of the prior spell.
- For spells that preceded other spells, we would most often know the start date of the succeeding spell.
- For spells that started during other spells, we would most often know the start and end dates of the "mother" spell.
- For spells that spanned the start of a new spell, we would most often know the start and end dates of the "daughter" spell.

Our general approach to imputing missing dates involved the following steps on the pooled PACE/HPOG sample.

(1) Express the date as a lag to some benchmark date. Specifically, we expressed start dates of main spells (those that did not start in the middle of any other spell) as the lag between randomization and the start of the spell, start dates of daughter spells as the lag from the start of the mother spell to the start of the daughter spell, and end dates of all spells as the lag from spell start date to spell end date.

- (2) Construct a statistical model for lag, and extract the predicted lag for spells with both known and unknown dates. (More details on this modeling process follow below. We constructed nine separate models.)
- (3) Identify the nearest neighbor case in the pooled dataset in terms of the predicted lag. Copy the lag from the spell with the known relevant date (start or end) to the case with an unknown value for the relevant date.
- (4) Add the imputed lag onto the benchmark date for the spell with an unknown date to obtain a preliminary date.
- (5) If the preliminary imputation violates any of the constraints, truncate it to just barely satisfy the constraints. For example, if preliminary imputation of an end date placed the end date past the date of follow-up interview but the respondent had reported that the spell ended before the interview, then we truncated the lag so that the job ended the month before the interview.

Before providing details on the nine models constructed in step 2, we offer some general observations about this methodology. We considered conducting this process separately for each site. We rejected that approach because of the complexity of the boundary constraints on dates and the rarity of patterns for respondents with multiple spells. Instead, we focused on constructing high-quality models and then finding the best match available.

The pooled sample size consisted of 27,939 job spells plus 13,093 school spells. After discarding spells reported by skipouts and spells that ended prior to randomization, the total number of spells was 40,672. Among these spells, either the start date or the end date was missing for 3,302, or 8 percent. Missing start dates was the more common problem, with 538 spells missing just the end date and 2,764 missing just the start date or both dates. Missing dates were slightly more common for school spells than for job spells (10 percent versus 7 percent). Missing dates for closed spells were much more common than for open spells (10 percent versus 4 percent). For VIDA, the overall missing data rate was slightly lower than for the rest of the pooled sample (6 percent versus 8 percent).

Exhibit C-8 below lists the models we created for each of nine types of lag and some features of each, including average imputed values for the various lags. Main spell #1 was always the ongoing spell at the time of randomization for those respondents working or going to school at the point of randomization, and so always has a negative lag. Main spell #2 was always the first spell after randomization for those not working or going to school at the point of randomization. Other main spells always followed main spell #1 or #2. Given this structure, we prepared separate models for the start date of each group (lag types 1, 5, and 6 below) and we modeled other features associated with the first spell separately, as well (lag types 2, 3, and 4). For other lag types, we modeled on a pooled dataset combining main spells #2 and higher (lag types 7, 8, and 9) and their associated subspells.

The set of variables allowed into each model varied across the nine lag types. Tested variables included program, randomized treatment group, the interaction of program with treatment group, elapsed time between randomization and follow-up interview (and its square), job/school status, next activity (work, school, or other), school control (three levels, nested within job/school

status), school level (three levels, nested within job/school status), open/closed status, life trajectory cluster (five levels), self-assessed goal progress, baseline covariates, two- and three-way interactions of these variables with program and treatment status, and other variables.

Model fit as measured by *R*-squared varied substantially across models, ranging from 0 percent to 79 percent. The reasons for this variation are not clear to us. Average imputed values were generally quite similar to average reported months.

Undercoverage of NSC-Reported Spells

As noted previously, we decided to supplement the histories of survey respondents who reported no training since randomization with any spells recorded for them in the NSC and then to impute the spell attributes collected in the survey beyond the simple start and end dates for the spells. Across the nine PACE sites, this edit changed the training history for 7 percent of the sample, switching them from a status of no training to some. In the VIDA sample, there were 23 such respondents, accounting for 3 percent of the sample. We added these NSC-reported spells to the three-year follow-up survey history for those respondents and imputed the missing survey outcomes, such as earned credits and credentials.

This imputation proceeded by matching these 23 respondents to other VIDA study participants and copying over the donors' outcomes. This matching was structured, not random. We constrained matches to be from the same treatment group and to have a similar predicted profile of four survey-reported spell-level variables:

- received a diploma or certificate typically requiring less than a full year's worth of study during the spell;
- received a diploma or certificate typically requiring a year or more's worth of study, but less than an associate degree during the spell;
- received an associate degree or higher during the spell; and
- total credits earned during the spell.

We formed linear models for each of these survey-reported spell-level outcomes in terms of baseline variables and NSC-reported spell- and person-level variables on enrollment and credential attainment. We fit these models on the pooled (treatment plus control) sample for VIDA. Given that the matching was not random, we did not conduct multiple imputation. We instead conducted single imputation and have ignored the impact on variances.

Exhibit C-8: Date Imputation for Three-Year Impact Study (Pooled PACE/HPOG Sample)

							Average L	ag/Duration
Lag Type	Modeled Variable	R-Squared (%)	Tested Variable s	Selected Variables	Sample Size	Missing Data Rate (%)	Reported (months)	Imputed (months)
1	Lag from randomization date to start of main spell #1 (always negative because spell #1 was activity at time of randomization)	15	1,071	18	8,994	9.7	-18.8	-18.6
2	Duration of main spell #1 (closed only)	79	3,625	3	7,377	7.3	25.9	28.0
3	Lag from start of main spell #1 to start of subspell	78	2,989	3	5,459	8.8	23.2	16.9
4	Duration of subspells of main spell #1 (closed only)	0	3,103	2	4,563	8.8	16.2	15.7
5	Lag from randomization date to start of main spell #2	7	1,089	2	3,863	7.0	6.7	6.7
6	Lag from randomization date to start of main spells #3 and higher	38	5,113	33	18,082	4.9	18.9	17.4
7	Duration of main spells #2 and higher (closed only)	16	4,760	23	13,509	5.4	8.3	8.3
8	Lag from start of main spells #2 and higher to start of subspell	43	4,105	11	4,270	6.3	6.0	4.2
9	Duration of subspells for main spells #2 and higher (closed only)	14	3,383	9	2,546	6.8	7.3	7.1

Source: National Directory of New Hires; National Student Clearinghouse; PACE and HPOG 1.0 three-year follow-up survey.

Note: Sample pooled across HPOG 1.0 and all nine PACE sites. Sample also pooled across treatment and control samples. A "main spell" is a spell that did not start in the middle of another spell. A "subspell" is a spell that did start in the middle of another spell.

C.3 Survey Nonresponse Analysis

As in any survey, nonresponse can lead to bias if nonresponse propensity is correlated with outcomes. In the context of a randomized experiment such as this evaluation of VIDA, concern about nonresponse is heightened if the nonresponse rate is different in the treatment group than in the control group. Nonresponse can lead to biased impact estimates even without differential nonresponse rates across study groups, but it is widely accepted that differential rates heighten concerns about biased impact estimates.³⁰

The three-year follow-up survey for VIDA obtained different response rates in the treatment group (81 percent) and control group (70 percent). The difference raises concerns that differences in baseline characteristics and outcomes may exist for respondents and the full sample for the two groups. We studied this matter further using administrative data and found evidence of nonresponse bias. (Illustration of these biases are presented in Exhibit C-9 below.) We developed a set of nonresponse adjustment weights that appears to remove most of this bias. This section first presents the evidence of nonresponse bias in unadjusted impact estimates and then documents the nonresponse adjustment weights that we created to mitigate this bias.

C.3.1 Evidence of Nonresponse Bias in Unadjusted Impact Estimates

We gauged the likelihood of nonresponse bias through two types of analysis, one involving baseline data and one involving post-randomization administrative data.

The first analysis takes baseline equivalence as an indication of the potential for bias. If randomization is correctly implemented, there should be no systematic differences between the treatment group and the control group. We directly tested that using complete data from the BIF (see Appendix A Section A.2). This insight also provides a proxy for nonresponse bias and the ability of our weighting scheme to correct for it. In the absence of nonresponse bias, appropriately weighted tabulations of the BIF data *among survey respondents* should also show baseline equivalence.

The second type of analysis looks directly at estimated impacts. We know who responded to the survey and we have administrative data outcomes for both survey respondents and nonrespondents. We can thus compute two impact estimates from the administrative data: one estimate from the unweighted full sample, which we treat as truth; and a second estimate from the weighted survey sample. In the absence of nonresponse bias (and with large enough samples), we should get the same (up to sampling variability) estimates of impact on the full sample and on the weighted sample of survey respondents. Theoretically, it is possible to test whether estimated differences between these two impact estimates are statistically significant, but we did not do this, relying instead on impressions of consistency across a collection of administratively measured outcomes.

³⁰ See for example, Deke and Chiang (2017). For a slightly contrarian view, see Hendra and Hill (2018).

Exhibit C-9 considers baseline equivalence, among survey respondents, in the absence of weighting.³¹ There were three characteristics that indicated significant imbalances in the full sample and five in the unweighted survey sample. These five were age, race/ethnicity, family structure, current education, and current work hours. So nonresponse slightly worsened baseline imbalance. The final columns show that weighting reduced the number of significant imbalances back to four.

Exhibit C-10 presents evidence about the level of nonresponse bias with and without adjustment weights. The first four panels of Exhibit C-10 compare three sets of regression-adjusted impacts on earnings outcomes from administrative records (NDNH or school). The first set of impact estimates (column 1) is based on the full sample. The second set (column 3) excludes survey nonrespondents. Differences between the first and second set of impacts signal nonresponse bias. The third set of impacts (column 5) also excludes survey nonrespondents but weights survey respondents with nonresponse adjustment weights, which are explained in Section C.3.2 below. If the weights are good, then the differences between the first and fifth columns will be smaller than those between the first and third columns for these four panels.

Note that both impact estimates are regression-adjusted with the covariates discussed in Appendix A Section A.3.

We did not formally test the differences between the alternative estimates, but given that the survey respondents constitute a very large subset (70-81 percent) of all participants, many of the differences would be statistically significant. For several follow-up administrative variables, there appears to be modest evidence of bias in estimated impacts based on the unweighted respondent sample, though that bias does not change any substantive conclusions. For example, the estimated impact on the average of quarterly earnings for the 12th and 13th quarters is modest and negative, though not statistically significant (–\$102), whereas for the full sample the estimated impact remains negative but is larger (–\$341). As another example, the impact of VIDA on Q17 earnings was +\$648 and statistically significant on the respondent sample, but only +\$357 and not statistically significant on the full sample.

If the evaluation of VIDA were a stand-alone project (rather than one of nine in the PACE project), we might have decided not to use weights. However, there was strong positive bias in the estimated program impacts on earnings and educational progress at another PACE site (Judkins et al. 2020) that led us to conclude that current earnings and educational progress are related to nonresponse propensity in different ways on the treatment and control groups at that site. Given the centrality of earnings and educational progress in the logic models for how PACE programs would affect a wide variety of life outcomes measured in the survey, this relationship clearly implies some survey nonresponse adjustment was required for that site. Out of an abundance of caution, we then applied nonresponse adjustment at all sites.

Note that the numbers in the first three columns of Exhibit C-9 reflect baseline balance for the full sample following imputation of missing data, whereas Appendix A Exhibit A.2 presented preimputation figures.

Exhibit C-9: Baseline Balance for VIDA on Full Sample, Unweighted Respondent Sample, and Weighted Respondent Sample

	Treatment			Treatment			Treatment		
Characteristic	(Full Sample)	Control	<i>p</i> -Value	(Unweighted Sample)	Control	p-Value	(Weighted Sample)	Control	p-Value
Age (%)			.222	 -		.024			.463
20 or under	12.3	15.8		12.7	18.3		11.3	14.9	
21-24	24.3	21.5		24.9	18.6		25.8	23.4	
25-34	39.3	41.9		39.6	44.5		39.5	40.7	
35+	24.1	20.8		22.8	18.6		23.5	21.0	
Gender (%)			.410			.557			.764
Female	69.7	72.1		70.21	72.2		69.9	71.0	
Male	30.3	27.9		29.79	27.8		30.1	29.0	
Race/Ethnicity (%)			.229			.015			.049
Hispanic, any race	95.4	96.5		95.3	97.3		95.2	97.1	
Black, non-Hispanic	0.4	1.2		0.5	1.8		0.6	1.8	
White, non-Hispanic	3.6	2.3		3.6	0.9		3.7	1.1	
Another race, non-Hispanic	0.2	0.00		0.0	0.0		0.0	0.0	
Family Structure (%)			.015			.062			.054
Not living with spouse/partner and not living with children	40.6	44.2		41.5	44.1		41.3	43.4	
Not living with spouse/partner but living with children	30.5	25.4		29.8	25.7		30.1	25.0	
Living with spouse/partner and not living with children	13.0	18.5		12.4	18.1		12.7	19.2	
Living with spouse/partner and children	15.9	11.9		16.3	12.1		16.0	12.4	
Living with parents (%)	32.9	34.2	.665	33.7	35.5	.607	32.6	34.4	.615
One parent has at least some college (%)	27.2	24.8	.397	27.5	27.2	.942	27.5	26.5	.771
High School Grades (%)			.746			.921			.778
Mostly A's	20.5	18.5		19.7	19.2		21.0	19.1	
Mostly B's	64.9	66.5		66.8	66.3		64.6	67.1	
Mostly C's or below	14.6	15.0		13.5	14.5		14.4	13.8	

	Treatment			Treatment			Treatment		
Characteristic	(Full Sample)	Control	<i>p</i> -Value	(Unweighted Sample)	Control	<i>p</i> -Value	(Weighted Sample)	Control	p-Value
Current Education (%)	. ,		.044	• ,		.009	. ,		.049
Less than high school diploma	0.2	1.4		0.0	1.8		0.0	1.9	
High school diploma or equivalent	23.0	29.3		23.1	29.9		22.7	29.8	
Less than one year of college	17.0	14.4		16.8	13.3		16.7	13.3	
One or more years of college	55.7	50.0		56.0	49.4		56.4	49.6	
Associate degree or higher	4.3	5.2		4.2	5.6		4.1	5.4	
Received vocational or technical certificate or diploma (%)	30.8	31.0	.923	31.1	30.8	.926	31.3	30.8	.884
Career Knowledge Index (average of items)	0.6	0.6	.932	0.6	0.6	.957	0.6	0.6	.902
Psycho-Social Indices									
Academic Discipline Index	5.5	5.53	.333	5.49	5.51	.620	5.49	5.51	.597
Training Commitment Index	5.8	5.79	.250	5.75	5.78	.423	5.75	5.78	.382
Academic Self-Confidence Index	5.0	5.04	.583	4.99	5.03	.478	4.99	5.04	.345
Emotional Stability Index	5.2	5.25	.320	5.20	5.22	.712	5.20	5.22	.792
Social Support Index	3.3	3.32	.231	3.28	3.32	.190	3.28	3.33	.051
Stress Index	2.2	2.19	.702	2.22	2.17	.356	2.22	2.16	.290
Depression Index	1.6	1.53	.165	1.57	1.53	.236	1.57	1.53	.250
Income (%)			.439			.236			.393
Less than \$15,000	50.0	51.9		50.0	50.3		49.0	48.5	
\$15,000-29,999	38.4	34.8		37.8	34.0		38.1	35.5	
\$30,000+	11.7	13.8		12.3	16.4		12.8	16.6	
Mean (\$)	16,244	16,535	.722	16,204	16,977	.420	16,403	17,592	.241
Public Assistance/Hardship Past 12 Months (%)									
Received WIC or SNAP	66.7	68.8	.506	67.5	69.8	.477	67.4	70.0	.444
Received public assistance or welfare	6.1	4.8	.384	6.6	4.7	.312	6.2	4.4	.264
Reported financial hardship	65.9	67.9	.508	66.6	65.4	.735	67.4	67.9	.865

	Treatment (Full			Treatment (Unweighted			Treatment (Weighted		
Characteristic	Sample)	Control	<i>p</i> -Value	Sample)	Control	<i>p</i> -Value	Sample)	Control	p-Value
Current Work Hours (%)			.008			.077			.257
0	63.2	67.3		62.4	66.6		61.4	63.8	
1-19	11.1	13.1		11.9	13.9		12.1	14.8	
20-34	18.4	10.6		18.1	11.2		18.4	12.5	
35+	7.7	9.0		8.0	8.3		8.6	9.0	
Expected Work Hours in Next Few Months (%)			.233			.545			.612
0	53.8	57.4		53.9	56.5		52.8	52.4	
1-19	11.3	13.5		11.7	13.6		11.6	14.8	
20-34	23.2	18.5		22.8	18.9		22.5	19.7	
35+	11.7	10.6		11.7	11.0		13.1	13.1	
Life Challenges Index (average in original units 1-5)	1.6	1.6	.585	1.6	1.6	.879	1.6	1.6	.880
Owns a car (%)	68.2	68.1	.980	66.6	66.9	.936	68.4	67.8	.861
Has both computer and internet at home (%)	60.0	56.9	.320	59.8	57.4	.505	59.7	57.8	.600
Ever arrested (%)	19.5	16.7	.262	19.4	15.7	.188	19.9	14.9	.075
Sample sizes	478	480		386	338		386	338	

Key: SNAP=Supplemental Nutrition Assistance Program. WIC=Special Supplemental Nutrition Program for Women, Infants, and Children.

Source: PACE Basic Information Form; PACE Self-Administered Questionnaire; response status to the PACE three-year follow-up survey. Sample restricted to those randomized for the evaluation of VIDA.

Note: SAS/SURVEYFREQ used to test for significant imbalances for categorical variables. SAS/TTEST used to test for significant imbalances for other variables. Weights are based on the dual raking system explained in Section C.3.2 below. Significant imbalances are highlighted in red, using a threshold for statistical significance of 10 percent.

Exhibit C-10: Comparison of Selected Estimates of the Impact of VIDA for the Unweighted and Weighted Survey Samples

Outcome	Impact Estimate (Full Sample)	Standard Error	Impact Estimate (Unweighted Sample)	Standard Error	Impact Estimate (Weighted Sample)	Standard Error
Confirmatory Outcome (NDNH)	Sample)	EIIOI	Sample)	EIIOI	Sample)	EIIOI
Average quarterly earnings Q12-Q13 after randomization (\$)	-341	352	-102	404	-187	413
Exploratory Outcomes (NDNH)	0+1	002	102	707	101	110
Q5 earnings (\$)	-227	234	-62	270	-116	282
Q9 earnings (\$)	-346	324	-228	380	-297	390
Q13 earnings (\$)	-405	371	-175	427	-268	434
Q17 earnings (\$)	357	412	648*	445	506	450
Any earnings Q5 (%)	-6.6	3.2	-6.3	3.6	-6.6	3.7
Any earnings Q9 (%)	-2.5	2.9	-1.9	3.4	-2.5	3.3
Any earnings Q13 (%)	-0.4	2.7	0.1	3.2	0.1	3.2
Any earnings Q17 (%)	2.4	2.5	4.4*	3.1	3.4	2.9
Confirmatory Education Outcomes (School Records)						
Any degree or certificate requiring a year or more of college study earned by month 36	9.4***	2.9	12.5***	3.4	11.9***	3.5
Secondary Education Outcomes (Survey and School Records)						
Number of college credits earned by month 36	6.4***	1.5	7.1***	1.7	6.7***	1.8
Full-time-equivalent months enrolled at any school (months)	2.2***	0.5	2.2***	0.6	2.2***	0.6
Any degree or certificate earned by month 36 (%)	12.7***	2.9	14.9***	3.4	13.7***	3.5
Any degree earned by month 36 (%)	7.3***	3.0	9.4***	3.5	8.2**	3.6
Secondary Employment Outcomes (Survey)						
Employed at survey follow-up (%)			-1.9	3.5	-2.4	3.6
Employed and earning \$17.50 per hour or more (%)			3.9	3.3	3.1	3.5
Employed in a job requiring a least mid-level skills (%)			5.0*	3.5	5.6*	3.6
Secondary Education Outcomes (Survey)						
Receipt of an exam-based certification or license ^a (%)			4.4	3.9	2.3	4.1

Outcome		Impact Estimate (Full Sample)	Standard Error	Impact Estimate (Unweighted Sample)	Standard Error	Impact Estimate (Weighted Sample)	Standard Error
Other Secondary Outcomes (Survey)							
Indicators of Independence and Well-Being							
Has health insurance coverage (%)				-0.6	3.7	-0.8	3.8
Receives means-tested public benefits (%)				-3.9	3.7	-2.8	3.9
Personal student debt (\$)				-505	652	-1104	719
Any signs of financial distress (%)				-1.4	3.7	-1.1	3.9
Indices of Self-Assessed Career Progress (av	verage)						
Confidence in career knowledge ^b				-0.01	0.04	-0.01	0.04
Access to career supports ^c				0.04**	0.02	0.04**	0.02
	Sample sizes (treatment + control)	9	58	72	4	72	24

Source: National Directory of New Hires; PACE three-year follow-up survey.

Note: All estimates are regression-adjusted as discussed in Appendix A Section A.3. The Full Study Sample columns are blank for survey-measured outcomes because those data are not available for the full sample.

Statistical significance levels, based on one-tailed *t*-tests of positive differences between research groups for positive outcomes and negative differences for negative outcomes (such as student debt), are summarized as follows: *** 1 percent level; ** 5 percent level; * 10 percent level.

^a Blended 18-month and three-year survey results.

^b Seven-item scale tapping self-assessed career knowledge; response categories range from 1=strongly disagree to 4=strongly agree.

^c Six-item scale tapping self-assessed access to career supports; response categories range from 1=no to 2=yes.

The final pair of columns shows that the nonresponse weights generally bring impact estimates based only on survey respondents back into good alignment with impact estimates on the full study sample. For example, the impact on quarterly earnings in the 12th and 13th quarters for the full sample is –\$341. The estimated impact for the weighted survey sample is –\$187, which is closer to the full sample estimate than the unweighted estimate is (–\$102). Neither of these impact estimates is statistically significant. This illustrates how the nonresponse weights removed much of the bias in the unweighted survey sample. The weighted impacts do not agree exactly with the full-sample impacts, but that would be an unreasonable goal for an adjustment procedure. Altogether, the weights reduced nonresponse bias for five of nine NDNH outcomes. We implemented this solution across all nine PACE sites.

For the survey-based outcomes, the three bottom panels of Exhibit C-10 compare the unweighted and weighted impact estimates. There are only minor differences between the estimates. This is consistent with the NDNH findings, that there are few differences between the full sample, unweighted, and weighted impact estimates.

C.3.2 Construction of Nonresponse Adjustment Weights

Construction of weights to reduce the biases just discussed was more complex than anticipated. At first, we tried a standard propensity scoring approach,³² as was used in the short-term report on VIDA (Rolston, Copson, and Gardiner 2017). However, that approach was not successful in removing severe biases discovered in another PACE site. Data storage arrangements posed a further challenge in developing a set of nonresponse adjustment weights. Contractual arrangements permitted the merging of survey data with either NDNH data or NSC data, but they did not permit the merging of NDNH and NSC data.

In response to these challenges, we developed a new approach that we call *dual-system raking*. "Raking" is the name for iterative procedures that create weights for a sample in such a manner that marginal tabulations of the sample agree exactly with pre-specified "control" totals in multiple dimensions. For example, raking can be used to create weights that will cause tabulations by gender, tabulations by race, and tabulations by age all to agree with pre-specified totals for gender, race, and age. In this example, gender, race, and age are dimensions.

In the context of nonresponse, if tabulations are prepared from the full sample and raking is used on the respondents, then weighted tabulations of the respondent sample will be in perfect agreement with parallel tabulations of the full sample. This exact multi-dimensional agreement is referred to as "hyperbalance." In the context of an experiment, if this procedure is run separately for the treatment and control groups, then hyperbalance between respondents and nonrespondents means that the weighted balance between the treatment and control groups on the respondent sample should be just as good as on the full sample.

In the standard approach, a logistic model for response status is fit in terms of universally available covariates (baseline and administrative), the model is used to generate a predicted response propensity for each person (respondent and nonrespondent), people are sorted on this prediction into strata, the empirical response rate is calculated for each stratum, and finally the inverse of this rate is applied to respondents as a nonresponse-adjustment weight.

This hyperbalance by arm means that if we estimated treatment impact on just the respondent sample with these weights but without regression adjustment, the estimated program impact on each of these hyperbalanced variables would agree exactly with corresponding program impacts estimated on the full sample. The use of regression adjustment to estimate program impacts (rather than simple mean difference between arms) means that this agreement will not be exact, but agreement should still be very good for hyperbalanced variables. Theoretically, it should also improve agreement (between impact estimates based on the full sample and impact estimates based on just the respondent sample) for a variety of related parallel outcomes.

Key raking variables include both categorical variables (e.g., any NSC-reported enrollment) and interval-valued variables (e.g., number of months enrolled in college according to NSC records). Including these interval-valued variables seems particularly important because many educational outcomes are associated with the length of study.

The need to include continuous variables in the raking is challenging because traditional raking algorithms work only with categorical variables. In contrast, the generalized raking we propose and use here can handle a mix of categorical and continuous variables.³³ For categorical variables, the procedure guarantees perfect correspondence between the respondent sample and full sample by arm on the distribution of the sample across the categories of each variable; for continuous variables, the procedure induces perfect agreement on the marginal means of each of them.

The generalized raking procedure of Folsom and associates is available in the WTADJUST procedure of SUDAAN. A similar procedure that only works for categorical covariates is the SAS raking macro of Izrael, Hoaglin, and Battaglia (2000). It was necessary to use both of these software packages because the analyses had to be run on two servers, one that had SUDAAN installed (at Abt) and one that did not (at ACF). We refer to our system as dual-system raking because it permits raking both to NDNH information and to NSC information though the two types of data reside on two different systems.

The details of the dual-system raking procedure are as follows:

We used SUDAAN/WTADJUST to develop survey weights on the Abt server that induced hyperbalance by arm for the means of four NSC variables. Two of these NSC variables were counts on months: months with any enrollment and months of full-time-equivalent enrollment. Two of the NSC variables were binary flags: any enrollment and any completions (credentials). All four of these variables were constrained to enrollment and completions within 35 months of randomization.

 We used SUDAAN/WTADJUST to develop survey weights on the Abt server that induced hyperbalance by arm for the means of four NSC variables. Two of these NSC variables were counts on months: months with any enrollment and months of full-time-

Generalized raking is most fully developed by Folsom and Singh (2000), who in turn draw on work originally proposed by Folsom (1991), Deville and Särndal (1992), and Folsom and Witt (1994). Dual raking is similar to the approach of Judkins et al. (2007) that involves the use of raking to construct weights in quasi-experimental designs.

- equivalent enrollment. Two of the NSC variables were binary flags: any enrollment and any completions (credentials). All four of these variables were constrained to enrollment and completions within 35 months of randomization.
- We merged the weights from step 1 with baseline data and follow-up survey data on the Abt server. We then passed these merged data through to a secure ACF server, where third-party ACF contractors merged our data with NDNH earnings data, removing personal identifiers from the merged dataset. We had verified that this set of NSC-adjusted weights provides nearly unbiased impact estimates for survey-based education outcomes, but after merging the weights with NDNH data, we discovered that these NSC-adjusted weights did not remove bias in survey-based impact estimates for earnings outcomes.
- To remedy this, we used the Izrael-Hoaglin-Battaglia macro on the ACF server to rake the weights from step 1 in such a manner as to attain hyperbalance by arm on three categorized versions of NDNH earnings. Specifically, we obtained hyperbalance for a six-level categorization of earnings at Q12 and Q13, a five-level categorization of earnings at Q9, and a five-level categorization of cumulative earnings from Q1 through Q12.³⁴ We verified that these weights removed most of the nonresponse bias on estimates of program impacts on NDNH earnings when estimated from nonrespondents instead of from the full sample. This sensitivity analysis included the continuous versions of the variables used in the raking, as well as continuous earnings at Q5 and Q17 and binary indicators for any employment at Q5, Q9, Q13, and Q17.
- We used the weights from step 3 on the ACF server to estimate (by arm) the distributions of survey-reported earnings. Specifically, we split Q12 earnings at \$0, \$6,000, and \$9,000; Q9 earnings at \$0, \$6,000, and \$9,000; and average quarterly earnings for Q1 through Q12 at \$3,000 and \$6,000. (The breaks for survey-reported earnings needed to be coarser than the breaks for NDNH earnings because of the smaller sample sizes in the respondent survey sample.)
- We again used the Izrael-Hoaglin-Battaglia macro on the ACF server to rake the weights from step 1, but for this step we used the control totals from step 4 rather than the NDNH totals used in step 3. We then verified that these weights removed most of the nonresponse bias on estimates of program impacts on NDNH earnings when estimated from nonrespondents instead of from the full sample. (Exhibit C-10 shows the results.) These weights did not perform as well as the weights from step 3 in reducing nonresponse bias on the respondent sample, but the deterioration (not shown) was not very large.

This process is also referred to as "binning." We used more bins for the confirmatory outcome than for the exploratory outcomes. Reducing the number of bins generally speeds convergence and reduces the frequency of extreme adjustments.

- We exported the 11 estimated totals from step 4 for each arm from the ACF server to the Abt server. (The data use agreement permitted the transfer of tabulations; only the export of microdata was prohibited.)
- We again used the Izrael-Hoaglin-Battaglia macro to rake the weights from step 1 to the
 control totals from step 4, but this time we did the raking on the Abt server rather than on
 the ACF server. We then merged these with NSC data on the Abt server and verified
 that these weights removed most of the nonresponse bias on estimates of program
 impacts on NSC outcomes when estimated from nonrespondents instead of from the full
 sample. (Exhibit C-10 above shows the results.)

C.4 Quality and Completeness of Exam-Based Credentials Reported in the Survey

Earlier analyses for another PACE site had identified a potential quality issue for reports on receipt of exam-based credentials in the three-year follow-up survey. Specifically, estimates of exam-based certifications and licenses for the San Diego Workforce Partnership's Bridge to Employment in the Healthcare Industry program at three years (see Judkins et al. 2020) were much lower than those based on the short-term survey at 18 months after randomization (see Farrell and Martinson 2017). This points to a clear problem, because the percentage of study participants who ever received such credentials cannot diminish over time.

A review of the survey's skip patterns and wording identified three features in the design of the three-year instrument for the PACE project that might have led to fewer credentials of this type being reported than were in the 18-month survey.

- First, the three-year instrument allowed only respondents with some formal schooling since randomization to report exam-based certifications and licenses. However, people who learn skills on the job or through independent online study (such as YouTube tutorials) can sit for the exams for many certifications and licenses.
- Second, the wording for the three-year instrument strongly emphasized that "schoolissued certificates" were not the same thing as "exam-based certifications and licenses."
 We had introduced this language to ease confusion about the difference between credentials issued by schools and credentials issued by other authorities. However, because some schools serve as proxy administrators of exams for credentials that are issued by other authorities, it is possible that this wording led some respondents to report exam-based credentials as school-based credentials or to not report them at all.
- The third feature is just the greater passage of time. Respondents may not have renewed exam-based certifications and licenses or they might have discovered that the credentials are less useful than anticipated, either of which could have reduced respondents' inclination to report older exam-based credentials.

Given this review, the PACE research team decided that the 18-month follow-up survey reports of early exam-based credentials earned are probably more accurate than the reports from the three-year survey. Accordingly, we decided to *combine* reporting on exam-based credentials for the two time periods. This new composite measure of receipt of any exam-based credential

since randomization was set to yes if the respondent reported receiving the credential in the 18-month survey or reported receiving it in the three-year survey at a time point after the date of the 18-month survey interview.

For the 15 percent of the study sample that did not respond to the 18-month survey, we imputed a response. When receipt dates were not reported in the three-year survey, we also imputed them. Both imputations are discussed above in Section C.3.

C.5 Quality and Completeness of School-Issued Credentials Reported in the Survey

The problems with reporting of exam-based credentials discovered at Bridge to Employment and just discussed in Section C.4 raised a question: Had similar problems occurred for *schoolissued* credentials that would justify also combining data on those credentials from the two surveys?

Results from analyses for yet another PACE site, Pima Community College (PCC)'s Pathways to Healthcare, said the answer was no. The PCC study offered college records to support its analysis, making it a good choice for investigating these survey outcomes. Analysis of PCC records showed that for school-issued credentials, the three-year survey was more accurate than the 18-month survey. The research team focused on Pathways to Healthcare respondents who reported a school-issued credential in only one of the two surveys, and then checked to see whether the PCC records confirmed issuance of that survey-reported credential. Among respondents who reported such a credential at 18 months but not at three years, PCC records confirmed this claim for just 35 percent. In contrast, among respondents who reported such a credential at three years but not at 18 months, PCC records confirmed this claim for fully 81 percent.

For some reason, the 18-month survey instrument seems to have generated many more unverifiable school-based credential claims than the three-year survey did. For this reason, the research team decided to rely on the three-year survey without combining data for school-issued credentials in all PACE sites where we used the follow-up survey rather than college records to measure educational progress.

Appendix D: National Student Clearinghouse Data

The National Student Clearinghouse (NSC) is a national database of college enrollment records designed to aid the administration of student loans programs but can be a useful tool for education researchers. In some of the other PACE sites, the research team made heavier use of these data than we did for VIDA, where we used them primarily for nonresponse adjustment and as a check on the coverage of the school records discussed in Appendix B. Section D.1 summarizes statistics on NSC coverage. Section D.2 provides details on how raw data from NSC were recoded to make them more relevant to the evaluation of VIDA. Finally, D.3 presents estimates of VIDA based on NSC data and contrasts them with the estimates presented in Chapter 3 of the report.

D.1 Coverage

Given the focus on loan administration, NSC does not cover schools that are not Title IV schools, those approved for federal student loans by the U.S. Department of Education. Moreover, although NSC does include a few schools that are not colleges in the sense used elsewhere in this report (issuing degrees), the vast majority of the schools are colleges. Exhibit D-1 shows the percentage of colleges providing records to NSC by year and by type of school. As shown, coverage of public two-year and four-year schools was more than 95 percent. Coverage was lower among private not-for-profit four-year schools, considerably lower among private for-profit four-year schools, and very low for private two-year schools (both for-profit and not-for profit).

Exhibit D-1: NSC College-Level Cooperation Rates by College Control and Level from 2013 through 2016

Type and Control of College	2013 (%)	2014 (%)	2015 (%)	2016 (%)
Public, four-year	99.2	99.4	99.5	99.6
Private, not-for-profit, four-year	93.6	95.2	95.8	96.1
Private, for-profit, four-year	74.4	79.9	81.7	81.0
Public, two-year	99.1	99.2	99.4	99.5
Private, not-for-profit, two-year	39.5	40.8	40.4	42.1
Private, for-profit, two-year	19.7	28.1	26.7	26.6

Source: National Student Clearinghouse, https://nscresearchcenter.org/wp-content/uploads/NSC_COVERAGE.xlsx.

Analyses of NSC data in this report are limited to enrollment records obtained from 2000 forward. All study participants gave their informed consent to have NSC share their records with the PACE research team. The team negotiated a contract with NSC to match relevant NSC records to the study participants. The team sent both Social Security numbers and names to NSC to make the matching more accurate. The abstracted records were then sent by encrypted secure methods to the research team, who have used them under tight security conditions.

D.2 Data and Measures

Information on outcomes other than enrollment tends to be less reliable.³⁵ Notably, standards and practices governing credential reporting are inconsistent across schools. So our primary use of NSC data was to measure enrollment. Counting the quarter during which random assignment occurred as quarter 0, the research team obtained an abstract from NSC in October 2018 covering enrollment through quarter 17 for all 958 VIDA study subjects (478 in the treatment group and 480 in the control group).

Records from NSC are arranged in a spell format with starting and ending dates. The research team translated these first into a set of person-month level records, reconciling multiple and conflicting spells as seemed most sensible. The team derived two variables for each person month. The first was a simple binary indicator of "any enrollment." The second was a measure of full-time-equivalent (FTE) enrollment that took the values 1 (for full-time enrollment), 0.75 for three-quarter-time enrollment, 0.5 for half-time enrollment, 0.25 for some but less than half-time enrollment, and 0 for no enrollment. To translate these to person-quarter-level outcomes, a student was counted as enrolled for the quarter if they were enrolled at all in any of the three months, and FTE enrollment was calculated by summing their total FTE months for the quarter.

D.3 Program Impacts on NSC-Measured Outcomes

Exhibit D-2 below compares a selection of estimated impacts of VIDA using both NSC records and adjusted records from the local Texas colleges.³⁷ We included this table as a check on the impacts estimated in the main body of the report using college records. The use of college records allowed us to estimate impacts on variables not measurable with NSC (such as receipt of particular types of credentials), but it also meant that we were not capturing progress for about 4 percent of students.

The pattern of effects of VIDA based on the two records systems is broadly consistent. For college enrollment, both the treatment and control group levels and the impact estimates are consistent between the systems. The two systems are much less consistent for recording of completions (i.e., credential awards). For some unknown reason, NSC reports many more completions than we found in local college records. The differences are roughly the same, though, for the treatment and control groups, so the differences in estimated impacts across the two system are modest and not statistically significant.

Dundar and Shapiro (2016) indicate that schools that choose to submit information on type of credential pursued or earned do so voluntarily and with minimal processing by NSC staff. About 90 percent of students attend schools that do submit information on credential types, but there is no systematic classification scheme for credentials that are not degrees. Schools merely submit names of certificates and diplomas awarded. The authors also specifically note that information on earned credits is weak. In addition, Dynarski, Hemelt, and Hyman (2015) report that only about 80 percent of degrees from Michigan colleges were reported to the NSC in the 2008-2010 period.

Because informed consent had been collected from all study participants, NSC shared full-/part-time status for everyone in the sample, something that it does not otherwise share with researchers.

³⁷ Refer to Appendix Section B.2 for details on the adjustment of VIDA records.

Exhibit D-2: Comparisons of Impacts of VIDA Based on Local College Records vs. Impacts Based on NSC Records

		NSC F	Records			Local Coll				
Outcome	Treatment Group	Control Group	Impact (Difference)	Standard Error	Treatment Group	Control Group	Impact (Difference)	Standard Error	Difference in Impacts	Standard Error
Any College Enrollment (%)										
In months 7-12	81.7	72.5	+9.2***	2.6	83.0	73.8	+9.2***	2.5	-0.1	1.5
In months 19-24	53.4	46.5	+7.0**	3.3	55.2	48.3	+6.9**	3.2	+0.1	1.8
In months 31-36	32.3	26.5	+5.8*	3.0	30.2	25.6	+4.6	3.0	+1.2	1.7
In months 43-48	26.3	18.8	+7.5***	2.8	23.2	15.2	+8.0***	2.6	-0.4	1.8
Cumulative Number of FTE of College Enrollment (#)	Months									
Through Quarter 12	14.1	12.1	+2.0***	0.5	13.5	11.3	+2.2**	0.5	+0.2	0.2
Any Completions from a Co	llege (%)									
By month 18	42.6	35.6	+7.0**	3.1	40.6	33.3	+7.3**	3.1	+0.3	1.4
By month 36	66.1	52.5	+13.6***	2.9	66.7	54.0	+12.7***	2.9	-0.9	1.4
Sample sizes	478	480			478	480				

Source: National Student Clearinghouse; VIDA partner college records.

Statistical significance levels, based on two-tailed tests of differences, are summarized as follows: *** at the 1 percent level; ** at the 5 percent level; * at the 10 percent level.

Appendix E: Sensitivity Analyses of Education Impacts

The VIDA report used local college records as the primary source for measures of confirmatory and secondary education outcomes. As a check on the sensitivity of impact estimates to this measurement choice, here we present an alternative set of estimates based on survey data. Across the confirmatory outcome and one secondary outcome, the conclusions that arise from each data system are broadly consistent.

Both systems show moderate effects (10 to nearly 11 percentage points) on the confirmatory outcome of *receiving a credential from a college that typically takes a year or more of study*. Both systems also show impacts of similar magnitude on receipt of any college credential. The small differences in estimated impacts are not statistically significant. Appendix D also found broad consistency between impacts based on National Student Clearinghouse records and those based on adjusted local college records.

Exhibit E-1: Comparisons of Impacts of VIDA, Based on Adjusted Local College Records with Impacts Based on the Three-Year Follow-up Survey

	Three-Year Follow-Up Survey Adjusted Local College Records									
Outcome	Treatment Group	Control Group	Impact (Difference)	Standard Error	Treatment Group	Control Group	Impact (Difference)	Standard Error	Difference in Impacts ^a	Standard Error
Confirmatory										
Received college credential requiring a year or more of study (%)	56.1	44.0	+12.1***	3.7	61.1	51.7	+9.4***	2.9	+2.7	3.5
Secondary										
Received any college credential (%)	63.1	50.9	+12.3***	3.8	66.7	54.0	+12.7***	2.9	-0.5	3.6
Sample sizes	386	338			478	480				

Source: PACE three-year follow-up survey; adjusted local college records.

Note: Statistical significance is based on one-tailed tests, unless otherwise noted.

Statistical significance levels, based on tests of differences between research groups, are summarized as follows: *** statistically significant at the 1 percent level; ** at the 5 percent level; * at the 10 percent level.

^a Statistical significance for Difference in Impacts is based on two-tailed test.

Appendix F: NDNH's Unemployment Insurance Wage Data

Through the 1990s, many social program evaluations relied on administrative earnings data provided by state Unemployment Insurance (UI) agencies. State agencies maintained these data, and privacy concerns sometimes precluded sharing with outside researchers. UI records have become more accessible since 1996 with the advent of a centralized national database—the National Directory of New Hires (NDNH). Among NDNH's virtues is that, unlike state data, it captures earnings for study participants who move to another state during the follow-up period.

The federal Office of Child Support Enforcement (OCSE) in the U.S. Department of Health and Human Services' Administration for Children and Families (ACF) operates NDNH. ³⁸ It contains new hire, quarterly wage, and UI information submitted by State Directories of New Hires, employers, and state workforce agencies. OCSE also supplements the state reports with records about earnings from federal civilian and military jobs (which are otherwise not covered by state UI data). Given this supplementation, the most important uncaptured earnings are any unreported tips, self-employment, firms' employment of independent contractors, and informal employment.³⁹

F.1 Data Collection Process

The primary purposes of NDNH are to assist state child support agencies to locate noncustodial parents, putative fathers, and custodial parents to establish paternity and child support obligations and to enforce and modify orders for child support, custody, and visitation. It is also used by state UI agencies and the federal Social Security Administration to identify overpayments of benefits. However, subject to federal law, regulation, guidance, and other requirements to protect data privacy and security, 40 OCSE may disclose certain information contained in the NDNH to requesting local, state, or federal agencies for research likely to contribute to achieving the purposes of part A or part D of title IV of the Social Security Act. Part A governs the federal Temporary Assistance for Needy Families (TANF) program. Part D governs the state/federal child support program. Such disclosures may not include the names, Social Security numbers (SSNs), or other personally identifying information.

If the disclosure is approved, the agency and OCSE must work together on the operational issues surrounding the technical and procedural aspects of the disclosure, such as mitigating

More detail is available at: https://www.acf.hhs.gov/css/training-technical-assistance/guide-national-directory-new-hires.

According to the U.S. Bureau of Labor Statistics, about 10 percent of workers are self-employed, https://www.bls.gov/spotlight/2016/self-employment-in-the-united-states/home.htm.

The legal authority for this disclosure for research purposes is contained in subsection 453(j)(5) of the Social Security Act and Section 5507 of the Patient Protection and Affordable Care Act. For more information, see: https://www.govinfo.gov/app/details/USCODE-2010-title42/USCODE-2010-title42-chap7-subchapIV-partD-sec653.

the risks of identifiability and establishing appropriate data retention and disposition schedules of data files.

ACF's Office of Planning, Research, and Evaluation (OPRE) and OCSE negotiated a memorandum of understanding allowing access to NDNH data for the PACE project. Among other provisions, the memorandum dictates what self-reported data from study subjects may be merged with NDNH data, the computing environment where these merges are conducted, and procedures for review of tables prior to release.

The PACE research team transmits match request files to OCSE quarterly. These match request files contain the names and SSNs of PACE study participants. OCSE verifies with the Social Security Administration that the reported SSNs belong to the named persons. For those SSNs that pass this test, OCSE copies NDNH records for that quarter and the preceding seven quarters to a secure folder on the ACF server. (Ordinarily, these records would be destroyed after two years.) These copied records contain a pseudo-SSN; the records are stripped of all personal identifiers.

States are required to submit earnings records to the OCSE within four months, but there are stragglers and corrections. To be safe, PACE analyses limit NDNH-based measures to time periods that ended at least six months prior to the extract date.

Once we are ready to analyze the collected data, we submit a "passthrough" file to OCSE containing a variety of PACE-assigned variables (such as treatment status and program ID) and self-reported variables (such as the baseline information described in Appendix A). OCSE then strips the personal identifiers out of the passthrough file and replaces the actual SSNs with the same pseudo-SSNs previously assigned to the archived wage records. The study then uses these pseudo-SSNs to merge program and self-reported data with NDNH quarterly wage data on ACF's secure server to estimate program impacts on earnings and employment.

F.2 Data and Measures

Random assignment for VIDA started in November 2011 and ended in June 2014. Given the lag of up to six months in processing of employer reports by the states and transfer of state data to OCSE, wage records from NDNH were available through Q4 2018; this means that we had 28 post-randomization quarters of earnings data for the earliest randomized study participants and 18 post-randomization quarters of earnings data for the last randomized study participants. In addition, we had eight quarters of pre-randomization data for the entire sample (we included only the four most recent of these quarters in our regression-adjustment models).

Of the 958 treatment and control group members randomized as part of VIDA evaluation, 955 study participants reported names and SSNs that OCSE deemed to be of sufficient quality for its matching purposes.⁴¹ This sample's earnings in each quarter were based on earnings records

The acceptability of the combination of a name and an SSN can vary over time. OCSE reviews the SSN ownership every quarter for the entire sample.

found for each sample member in matching. As usual in use of such data, we defined sample members as "not working" when there was no match to wage records in a given quarter.

Each quarter, we submitted a match request file to OCSE that contained the names and SSNs for everyone randomized to that date. For those where the SSNs and names aligned, OCSE returned earnings data for the eight most recent quarters in NDNH, which is lagged by two quarters from the date of the match. This meant that we had up to eight wage reports for each quarter. For each person matched to NDNH data, we used the last version with reported earnings for each quarter within a window. For example, for earnings in the second quarter of 2014, we used reports from the match file for the third quarter of 2016 if the person had earnings reported that quarter, and we discarded the seven earlier sets of earnings data for the second quarter of 2014. If the person did not have earnings reported in the most recent match file (i.e., the third quarter of 2016) for the second quarter of 2014, we used the reported earnings from next earliest match file (i.e., the second quarter of 2016), and if that quarter did not have reported earnings we used earlier match file data.

When the earnings data for a quarter contained two or more reports for the same person from the state, we assumed that these reports reflected either different payments by the same employer or payments from different employers. Consistent with the logic discussed in Appendix H, we reviewed quarterly earnings for any values that were clearly impossible, but failing to find any such values, did not discard or top-code any large earnings amounts.⁴²

We calculated two outcomes for each quarter: a binary indicator of "any earnings" (yes/no) and the total reported wages for the quarter (\$). The result was two series of 21 measures for each person (employment and earnings for the four quarters before randomization, the quarter of randomization, and the 16 quarters after randomization). In addition, we formed a quarterly average for Q12 and Q13 after random assignment (the confirmatory earnings outcome, established to align with the theory of change) and an annual average for Q10-Q13.

⁴² Meaning values above a threshold are set equal to the threshold.

Appendix G: Comparing NDNH- and Survey-Based Employment and Earnings Estimates

Barnow and Greenberg (2015) review findings from evaluations that include both administrative records and surveys as data sources for earnings impacts. Although average survey-reported earnings tend to be higher than average total Unemployment Insurance (UI) earnings, impact estimates still may be nearly unbiased (Kornfeld and Bloom 1999). In the evaluation of VIDA, average quarterly earnings agree rather well between the two measurement systems, but correlational analysis shows that there is some measurement noise in one or both. The correlation in person-level quarterly earnings between the two systems at Q12 is 0.66 for the treatment sample and 0.59 for the control sample.⁴³

This section compares estimates of employment and earnings impacts based on National Directory of New Hires (NDNH) data and survey self-reports.⁴⁴ It also presents estimates of the impact of VIDA on self-employment earnings.

The top panel in Exhibit G-1 below shows the degree of agreement of impact estimates for VIDA derived from the two sources. The estimated impact based on UI records of –\$277 for average earnings in Q12 is quite similar to the estimated impact of –\$248 for Q12 based on three-year follow-up survey data. We explored whether earnings from self-employment could explain the difference between –\$277 and –\$248 if we were to treat the difference as real; however, earnings from self-employment are too small to explain the difference. It could be that the difference is just due to random memory errors by respondents.

The second panel of Exhibit G-1 shows that NDNH-based employment estimates are slightly higher than survey-based estimates for both treatment group members (75 and 65 percent, respectively) and control group members (78 and 68 percent, respectively), leading to

The survey figures convert the available survey measure—earnings in the prior week (calculated as hourly wage multiplied by number of hours worked)—to a calendar-quarter-level estimate by multiplying by 13 (the average number of weeks in a quarter).

From the follow-up survey, we had a complete history of jobs, with the starting wage and hours for each job as well as the last wage and hours for each job. We combined these to establish weekly earnings for the first and last weeks of a job. We then interpolated to get wages for each intervening month. We then summed weekly wages across jobs for multiple-job holders to get weekly earnings for every week between randomization and interview. Finally, we summarized these to the person-quarter level.

⁴⁵ Assuming a correlation of 0.63 between the two person-level latent effects (the average of the correlations between NDNH- and survey-reported earnings for the two groups), the standard error between the two estimated impacts is \$339, which is larger than the difference between the two impact estimates.

somewhat different estimated employment impacts.⁴⁶ Most of the difference is probably due to the time frame; the percentage with any earnings over three months is bound to be higher than the percentage employed on a particular day.

Exhibit G-1: Impacts of VIDA on Earnings and Employment around Follow-up Q12 Based on Wage Records and Self-Reports

Outcome	Treatment	Control	Impact	Standard Error
Quarterly Earnings (\$)				
Average NDNH earnings in Q12	5,978	6,255	-277	365
Self-reported earnings in Q12	5,464	5,713	-248	415
Self-reported earnings from self-employment in Q12	24	2	22*	11
Employment (%)				
Average with employer-reported wages in Q12 (NDNH)	74.6	77.5	-2.9	2.8
Percentage working in the week prior to survey interview (Survey)	65.3	67.7	-2.4	3.6
Sample sizes				
NDNH	476	479		
Survey	386	338		

Source: National Directory of New Hires; PACE three-year follow-up survey.

Note. Self-reported earnings are calculated for the week prior to the survey interview, based on reported work hours and wages, and multiplied by 13 weeks for a quarterly estimate. A majority of survey interviews occurred in the 12th and 13th follow-up quarters.

Statistical significance levels, based on two-tailed tests of differences, are summarized as follows: *** 1 percent level; ** 5 percent level; * 10 percent level.

Using the average correlation for the earnings, we obtain an approximate standard error for the difference between the two estimated impacts of 2.9 percentage points, which is roughly as large as the difference between the two estimates. Therefore, this difference is not statistically significant.

Appendix H: Treatment of Outliers

We took a conservative approach to outliers, retaining extreme values except where they were clearly impossible. This approach is based on the general difficulty of discriminating between errors and legitimate large values and on the fact that remedies require assumptions about true values that may not be correct.

Trimming observations could easily introduce non-ignorable nonresponse by making nonresponse a function of Y.⁴⁷

Winsorizing observations (also known as "top-coding," where values above a threshold are set equal to the threshold) could introduce bias if there is a treatment impact but the same threshold is used for treatment and control group members (and there is no reasonable basis for setting different thresholds for the two groups).

Furthermore, evidence suggests that results are generally robust to extreme values. In particular, research by Judkins and Porter (2016) and Lumley et al. (2002) indicates that for the sample sizes available in this evaluation, ordinary least squares inference on the reported data should be robust to outliers.

Outcomes assessed for extreme values included instructional hours (by type of instruction), credits, and National Directory of New Hires earnings. We found no values that were clearly impossible, and thus retained all reported values in the analysis.

Trimming by definition creates item nonresponse because the provided response is discarded. If trimming is a function of observed Y, as is standard, and if there is some relationship between observed Y and true Y, then item nonresponse becomes a function of true Y, which is known as "non-ignorable nonresponse." Because there is no known way to remove bias due to non-ignorable nonresponse, trimming is likely to create uncorrectable biases in estimated treatment effects.

Appendix I: Cost-Benefit Analysis Supplement

This appendix provides additional analysis and an overview of methods. Section I.1 provides detail on cost estimates by stakeholder perspective and the calculation of postsecondary education and training costs. Section I.2 reports cost analysis methods.

I.1 Additional Cost Analysis

The primary focus of the cost analysis is cost of VIDA to **society as a whole**. However, costs calculated from various stakeholder perspectives are also often of interest to policymakers and researchers, so this cost analysis also reports costs from the perspective of the **participant**, the **federal government**, **state and local governments**, and **the rest of society**. (The cost to the society as a whole is the sum of the costs for the four stakeholder perspectives.)

Exhibit I-1 reports how the costs of VIDA accrue by perspective. All numbers are cost differences—the difference between costs for the treatment group and the control group from each perspective. VIDA participants have a negative total cost because of both increased postsecondary education and training enrollment and the substantial financial assistance that VIDA provides. The increased enrollment, combined with VIDA tuition assistance, results in increased remitted financial aid and decreased tuition. Financial assistance from VIDA for incidental costs of attendance (books, supplies, tutoring, other fees; transportation and childcare) results in a relative cost of -\$1,683 to participants (because control group members incur these costs for their attendance). An additional \$88 in financial assistance from VIDA for living expenses results in a total cost from the participant perspective of -\$7,082. That is, treatment group members have substantially more resources as a result of VIDA relative to the control group.

Exhibit I-1: Costs of VIDA by Perspective

Component	Participant (\$)	Government, Federal (\$)	Government, State/Local (\$)	Rest of Society (\$)	Society as a Whole (sum) (\$)
VIDA program services	0	-48	2,229	1,420	3,601
Postsecondary education and training total	-6,994	979	6,181	2,946	3,112
College appropriations, tuition, and financial aid	-5,311	979	1,599	28	-2,705
VIDA tuition assistance (paid directly to the college)	0	0	3,310	2,108	5,418
Incidental cost of attendance	-1,683	0	1,272	810	399
VIDA living expenses assistance	-88	0	54	34	0
Total cost	-7,082	931	8,464	4,400	6,713

Source: PACE cost data interviews and VIDA program financial records; VIDA administrative records of financial assistance, with data reported for those treatment group members for whom VIDA reported any expenditures during the four years after random assignment; VIDA partner college records; PACE 18-month and three-year follow-up surveys; Integrated Postsecondary Education Data System.

Note: The costs in this exhibit is the difference between per-member treatment group and control group costs.

As funders of the VIDA program and postsecondary education and training, state and local governments bear the largest cost of VIDA, at \$8,464. Charitable foundations (rest of society perspective) provide a substantial share of VIDA funding, and costs from this perspective are \$4,400. The federal government's cost of \$931 results largely from financial aid provided to support the postsecondary education and training.

As detailed in Section I.2 below, the instructional cost portion of the postsecondary education and training costs are the unit costs of enrollment (Exhibit I-4) multiplied by the quantity of enrollment implied by postsecondary education and training impact estimates from Chapter 4 of the main report. Exhibit I-2 builds up the cost estimates from these underlying parameters.

As noted in Chapter 3, enrollment impacts persist five years after random assignment for the first 80 percent of the sample to be randomly assigned. As such, costs associated with VIDA may grow if the number of full-time-equivalent (FTE) months of enrollment since random assignment continues to grow for the full sample.

Exhibit I-2: Costs of Postsecondary Education and Training

Outcome	Treatment Group	Control Group	Impact (Difference)
FTE months enrolled in college within 4 years (#)	15.02	12.22	+2.80***
Total implied cost of instruction (\$969 per FTE month) ^a (\$)	14,551	11,838	2,713

Source: Exhibit 3-2; Integrated Postsecondary Education Data System (data weighted by 18-month and three-year PACE survey responses). *Note:* Impact findings from Chapter 3 (Exhibit 3-2) in italics. FTE (full-time-equivalent) months enrolled in college is a secondary outcome, with statistical significance based on a one-tailed test.

Statistical significance levels based on differences between research groups: *** 1 percent level; ** 5 percent level; * 10 percent level.

I.2 Cost Analysis Methods

This section describes our approach to estimating the per-participant cost of VIDA.⁴⁸ There are two categories of cost differences associated with VIDA: program services and postsecondary education and training. Total costs are calculated by summing the categories. Equation I1 summarizes the calculation detailed in this appendix. The differences are the treatment group member costs minus the control group member costs for each category.

(Eq. I1)

Total cost of VIDA =

Cost differences of program services +
Cost differences of postsecondary education and training

^a This calculation of this estimate is described in Section I.2 under Postsecondary Education and Enrollment.

Cost data were collected in anticipation of conducting a cost-benefit analysis (CBA)—in which intervention costs are compared with intervention benefits (primarily increases in earnings). However, as discussed in Chapter 4 of the main report, the VIDA program has not yet produced expected gains in earnings. A CBA of VIDA would have compared its costs to the impacts on total earnings since random assignment, adjusted for resulting changes in fringe benefits, tax liabilities, and public assistance.

Program Services

VIDA Program Services. VIDA program services include—for treatment group members—the costs of counseling, assessments, College Prep Academy, other services that the program provided, and the administrative costs associated with the program. The right column of Exhibit I-3 lists the elements of VIDA available to treatment group members only.

Exhibit I-3: Comparison of Career Pathways Components Available to VIDA Control Group and Treatment Group Members

Component	Available in Community to Both Groups	Available to Treatment Group Only (Additional Services in VIDA)
Assessment	College entrance exams	 Individual assessment appointment completed with a VIDA counselor after enrollment to review education and employment goals, barriers, and financial need Routine assessment of financial need throughout program
Instruction	 Developmental education in math, reading, and writing at area community colleges Education and occupational training programs at area colleges/universities or other training providers 	 College Prep Academy for instruction in math, reading, and writing provided in condensed 16-week full-time format at no cost Targeting by VIDA of education and occupational training programs at area colleges and universities or other training providers for in-demand occupations in the region
Supports	 Tutoring and academic advising through area colleges/universities Career and personal counseling through local social service providers, including American Job Centers (AJCs) and Texas Department of Assistive and Rehabilitative Services (DARS) Federal financial aid to attend school Limited grants and scholarships to attend school 	 Dedicated VIDA counselors Mandatory weekly group or individual counseling sessions Substantial assistance for tuition and enrollment-related fees aligned with each participant's financial need Financial assistance to pay for course-related books, tools, supplies, uniforms For College Prep Academy participants, VIDA pays for two rounds of college entrance exam testing Financial assistance to pay for transportation and childcare related to attending school
Employment Services	 Services available from local social service providers, including AJCs and DARS Career centers and employment services available from the colleges and universities 	 Identification of in-demand occupations in region designed to facilitate employment upon training completion Job search-related topics covered in group counseling sessions Phone call follow-up to graduates by program staff to determine employment status; offer of resume review if graduate is unemployed

Source: Program documents, telephone interview and on-site interviews with VIDA staff; table first appeared in Rolston et al. (2017; Exhibit 3-2).

The cost of VIDA program services per treatment group member includes the Assessment and Employment Services components, as well as the items in Instruction and in Supports that are not financial assistance. Financial assistance supports postsecondary education and training, either as revenue that covers college costs (tuition and enrollment fee assistance) or as supporting incidental costs of enrollment (books, tools, supplies, uniforms, transportation, and

childcare). The small amount of financial assistance that VIDA provided for living expenses is included in the perspective analysis as a transfer from VIDA to participants that does not represent a cost to society as a whole.

Costs of program services provided to the treatment group are estimated based on financial records from VIDA, including participant-level documentation of financial assistance, analyzed with the help of telephone and on-site interviews with VIDA staff.

Similar Community Services. Control group members could access some program services elsewhere in the community, including from colleges and local service providers that were similar to services received by treatment group members from VIDA. As shown in the left column of Exhibit I-3, examples include accessing academic tutoring and advising at local colleges/universities and receiving standard employment services from American Job Centers (AJCs) or the Texas Department of Assistive and Rehabilitative Services.

The next calculation is the cost of those similar services accessed by control group members. The control condition in the PACE evaluation did *not* prohibit access to services outside of VIDA. Though control group members did not have access to the VIDA program, they could participate in all other education and training, financial assistance, and job search assistance available either at the colleges/universities they were attending or in the community. Chapter 4 of the *Implementation and Early Impact Report* (Rolston et al. 2017) documents that control group members accessed supportive and employment services, but at a lower rate than treatment group members did.

Control group members were primarily students enrolled in three local community colleges and one university with which VIDA partners, so although they did not have access to the VIDA program, they were engaged in training and could participate in advising, financial assistance, and job search assistance available at their campus and elsewhere in the community. All services provided by a college/university or other training institution outside of VIDA are included as a cost of postsecondary education and enrollment—the next cost component below.

As documented in Section 3.1.3 of the *Implementation and Early Impact Report* (Rolston et al. 2017), treatment and control group members could access job search supports from other community providers (e.g., AJCs). The cost analysis approximates the costs of the control group's use of such community provider services. This cost is approximated rather than estimated because, though the PACE follow-up survey asks about the *incidence* of the use of such services (that is, whether any of the service was used), the cost analysis does not have information on where services were received. While services from colleges are already captured in postsecondary training and enrollment costs, services from community providers are not, and must be estimated. The cost analysis also does not have information on the total *quantity* of services that control group members used.

In consultation with authors of the *Implementation and Early Impact Report*, the cost analysis team determined that control group members are not likely to have used services provided by such external providers to a substantially greater degree than treatment group members. So the cost analysis does not assess a substantial cost for control group use of alternative services. To

allow for the possibility of such a difference, the cost analysis assumes that 5 percentage points more treatment group members used such services than did control group members. Use of such services is assigned an average cost of \$1,143 per participant, which includes a bundle of services (individual training accounts, program activities, and supportive assistance) with cost estimates for AJCs from Fortson et al. (2017). Adjusting for a regional price parity value of 0.84 and multiplying by the 5 percentage point approximation results in the approximated value of \$48 reported in Section 7-1 of the main report. In the perspective analysis, this value is assumed to be funded by federal grant programs.

Postsecondary Education and Training

This second cost category includes the costs of participants' enrollments. All postsecondary education and training is included because, as discussed in the main impact report (Exhibit 2-1), the program's theory of change allows for an increase in postsecondary education and training after participation in the program, which is found and discussed in Chapter 3. The theory of change hypothesizes the intervention to both increase hours of training directly and increase future training along a career pathway. Both of these effects suggest greater costs of postsecondary education and training for treatment group members relative to control group members. Postsecondary education and training costs include two subcomponents: the instructional cost of enrollment and incidental costs of attendance supported by VIDA financial assistance (and proportional costs for the control group).

The instructional cost of postsecondary education and training is calculated as the product of a *quantity* measure of units of training received and a *unit cost* of the training.

To measure quantity of enrollment, this analysis uses impacts from Section 4.2 of the main report. Specifically, the analysis uses the secondary outcome of FTE (full-time-equivalent) months enrolled within four years of random assignment.⁴⁹ The analysis estimates postsecondary education and training instruction costs by multiplying the unit cost estimates in Exhibit I-4 (below) by enrollment quantities reported in Chapter 4 of the main report, as shown in Exhibit I-2 (above).

The analysis applies a unit cost estimate based on the average unit cost across colleges/universities that participants reported attending in the PACE 18-month and three-year follow-up surveys. The average is calculated by weighting by the number of FTE months of enrollment at each institution so that the average cost aligns with the amount of enrollment at the various institutions. Because 60 percent of enrollment is at South Texas College, and an additional 30 percent of enrollment is spread between Texas State Technical College and the University of Texas Rio Grande Valley, the unit cost estimate largely reflects costs at these institutions.

Exhibit I-4 details the unit cost estimates and additional financial variables used in the perspective analysis reported in Section I.1. As an estimate for unit costs of college

Local college records are the chief data source for education outcomes in the report. PACE survey responses indicate some additional enrollment outside of partner colleges, but such enrollment was small, with little difference between the treatment and control group.

enrollment—regardless of who paid the costs—the analysis uses the average cost per FTE month enrolled, weighted by FTE months enrolled. This estimate comes from Integrated Postsecondary Education Data System (IPEDS) data. Variables from IPEDS used in the cost analysis include per-student expenditures, revenue shares by type, enrollment, and student aid (including Pell grants). Cost per FTE month is estimated from these variables following definitions used in the Delta Cost Project Database (Hurlburt et al. 2017). This unit cost per FTE month measure is based on the institution-wide average instructional cost. This measure does not account for the possibility that the programs that VIDA study participants enrolled in (nursing and allied health professions, education, social services, and specialized trades; see Section 1.2.1) may have had higher costs of instruction (and tuition) than the institution-wide average. If so, the cost difference reported here may understate actual costs.

Exhibit I-4: Unit Costs of FTE Month Enrollment

	Cost per	PACE Participant Estimated Out-of-	Institution Revenue Share			
Measure		Pocket per FTE Month Enrolled (before any VIDA assistance)	Net Tuition, Fees	Federal Government	State/Local Government	Other
Average over colleges reported in PACE surveys, weighted by FTE enrollment	\$969	-\$260	-1.6%	36.4%	64.1%	1.1%

Source: Integrated Postsecondary Education Data System data, PACE 18-month and three-year follow-up surveys.

VIDA provides financial assistance that supports incidental costs of attending college, including transportation, childcare, books, supplies, tools, non-enrollment fees, and tutoring. The cost analysis does not assume this assistance covers the full incidental cost of attendance, nor does it attempt to estimate the full cost of enrollment. Rather, the costs supported by VIDA are included, along with an estimate of proportional costs incurred by control group members that is needed to estimate a cost difference. Such costs for the treatment group are estimated using VIDA administrative data.

For these financial assistance items (in the Supports component in Exhibit I-3), the cost analysis assumes that control group members incur their own incidental costs of attendance. Control group costs for these items are included as a proportion of treatment group costs equal to control group FTE months enrolled relative to treatment group FTE months enrolled multiplied by treatment group incidental costs.⁵¹

To understand which stakeholders bear the costs of enrollment, the analysis also estimates costs to students and each of the perspectives that fund the college costs of enrollment in addition to the total cost per FTE month enrolled. Student costs are measured as PACE

The unit cost and other estimates that are averaged across colleges are five-year averages of inflation-adjusted costs from 2011-2015.

The incidental cost of tutors supported by VIDA financial assistance is not included in this calculation for control group incidental costs, with the assumption that control group members would seek out tutoring provided by their college or forgo tutoring.

participant out-of-pocket costs per FTE month enrolled. This measure assumes that 60 percent of participants receive the average Pell and state grant amounts received by students receiving grants (reported in IPEDS). Treatment group members receiving federal and state financial aid are assumed to receive additional aid remitted to cover living expenses equal to the amount of tuition and enrollment-related fee assistance that VIDA provides (based on the Pell program structure and the team's site visit notes). PACE participant out-of-pocket costs are negative because Pell grant amounts for which students are eligible exceed tuition and fees.

For the remaining 40 percent of students, treatment group members are assumed to have no tuition liability (because it is paid by VIDA) whereas control group students are assumed to pay tuition costs per FTE month of enrollment based on an average of the VIDA tuition assistance and the state/local and other revenue shares of the colleges (an estimate of about 34 percent of cost per FTE month enrolled).

For instructional costs, perspectives of other funders of college are estimated based on the share of colleges' revenue from tuition/fees (i.e., other students, which is on average negative, meaning students receive net grant disbursements); the federal government (largely through Pell grants); state/local governments (largely through direct appropriations); and other sources. For VIDA financial assistance, costs are apportioned to state/local governments and the rest of society (in this case, private foundations) based on revenue shares in VIDA financial statements. For control group incidental costs of enrollment, control group participants are assumed to pay costs out-of-pocket, although it is possible they received financial assistance from another community organization.

Appendix References

- Barnow, B. S., and D. Greenberg. 2015. "Do Estimated Impacts on Earnings Depend on the Source of the Data Used to Measure Them? Evidence from Previous Social Experiments." *Evaluation Review* 39 (2): 179-228.
- Beicht, Ursula, and Michael Friedrich. 2008. "Anlage und Methode der BIBB-Übergangsstudie." In *Ausbildungschancen und Verbleib von Schulabsolventen*, edited by Ursula Beicht, Michael Friedrich, and Joachim Gerd Ulrich, 79-99. Bielefeld, Germany: W. Bertelsmann.
- Betz, N. E., and K. M. Taylor. 2001. *Manual for the Career Decision Self-Efficacy Scale and CDMSE—Short Form.* Columbus, OH: The Ohio State University.
- Bühlmann, P., and S. van de Geer. 2011. *Statistics for High-Dimensional Data*. Berlin, Heidelberg, Germany: Springer.
- Ciolino, Jody D., Hannah L. Palac, Amy Yang, Mireya Vaca, and Hayley M. Belli. 2019. "Ideal vs. Real: A Systematic Review on Handling Covariates in Randomized Controlled Trials." BMC Medical Research Methodology 19: 136. doi:10.1186/s12874-019-0787-8
- Cohen, S., R. Kamarck, and R. Mermelstein. 1983. "A Global Measure of Perceived Stress." *Journal of Health and Social Behavior* 24 (4): 385-396.
- Cutrona, C., and D. Russell. 1987. "The Provisions of Social Relationships and Adaptation to Stress." *Advances in Personal Relationships*, 1.
- Deke, J., and H. Chiang. 2017. "The WWC Attrition Standard: Sensitivity to Assumption and Opportunities for Refining and Adapting to New Contexts. *Evaluation Review* 41: 130-154. https://journals.sagepub.com/doi/10.1177/0193841X16670047.
- Deville, J. C., and C. E. Särndal. 1992. "Calibration Estimation in Survey Sampling." *Journal of the American Statistical Association* 87: 376-382. https://www.tandfonline.com/doi/abs/10.1080/01621459.1992.10475217.
- Duckworth, Angela L., C. Peterson, M. D. Matthews, and D. R. Kelly. 2007. "Grit: Perseverance and Passion for Long-Term Goals." *Journal of Personality and Social Psychology* 92 (6): 1087-1101. https://psycnet.apa.org/record/2007-07951-009.
- Dundar, A., and D. Shapiro. 2016. *The National Student Clearinghouse as an Integral Part of the National Postsecondary Data Infrastructure*. Retrieved from the National Student Clearinghouse Research Center website: https://nscresearchcenter.org/wp-content/uploads/NSC-as-an-Integral-Part-of-the-National-Postsecondary-Data-Infrastructure.pdf.

Abt Associates Appendix References pg. 68

- Dynarski, S. M., S. W. Hemelt, and J. M. Hyman. 2015. "The Missing Manual: Using National Student Clearinghouse Data to Track Postsecondary Outcomes." *Educational Evaluation and Policy Analysis* 37(1s): 53S–79S. https://journals.sagepub.com/doi/pdf/10.3102/0162373715576078.
- Farrell, Mary, and Karin Martinson. 2017. Pathways for Advancing Careers and Education (PACE). The San Diego County Bridge to Employment in the Healthcare Industry Program: Implementation and Early Impact Report. OPRE Report 2017-41. Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services. https://www.acf.hhs.gov/opre/report/san-diego-county-bridge-employment-healthcare-industry-program-implementation-and-early.
- Folsom, R. E. 1991. "Exponential and Logistics Weight Adjustments for Sampling and Nonresponse Error Reduction. In *Proceedings of the American Statistical Association, Social Statistics Section,* 197-202. Alexandria, VA: American Statistical Association.
- Folsom, R. E., and A. C. Singh. 2000. "The Generalized Exponential Model for Sampling Weight Calibration for Extreme Values, Nonresponse, and Post-Stratification." In *Proceedings of the American Statistical Association, Section on Survey Research Methods,* 598-603. Alexandria, VA: American Statistical Association.
- Folsom, R. E., and M. Witt. 1994. "Testing a New Attrition Nonresponse Adjustment Method for SIPP." In *Proceedings of the American Statistical Association, Section on Survey Research Methods*, 428-433. Alexandria, VA: American Statistical Association.
- Fortson, K., D. Rotz, P. Burkander, A. Mastri, P. Schochet, L. Rosenberg, S. McConnell, and R. D'Amico. 2017. *Providing Public Workforce Services to Job Seekers: 30-Month Impact Findings on the WIA Adult and Dislocated Worker Programs*. Princeton, NJ: Mathematica Policy Research. https://www.mathematica.org/our-publications-and-findings-publications/providing-public-workforce-services-to-job-seekers-30-month-impact-findings-on-the-wia-adult.
- Goldrick-Rab, S., and K. Sorensen. 2010. "Unmarried Parents in College." *Future of Children* 20 (2): 179-203.
- Hendra, Richard, and Aaron Hill. 2018. "Rethinking Response Rates: New Evidence of Little Relationship between Survey Response Rates and Nonresponse Bias." *Evaluation Review*. doi:10.1177/0193841X18807719.
- Holland, Paul W. 1986. "Statistics and Causal Inference." *Journal of the American Statistical Association* 81 (396): 945–960. doi:10.1080/01621459.1986.10478354.
- Hoven, M. R. 2012. "Investigating the Relationship between Perceived Social Support and Parent Self-Efficacy in Parents of Preschool-Aged Children." Master's Thesis. University of British Columbia.
 - https://circle.ubc.ca/bitstream/handle/2429/43343/ubc 2012 fall hoven michaelyn.pdf?seq uence=3. Last accessed 8/28/2015.

- Hurlburt, S., A. Peek, and J. Sun. 2017. *Delta Cost Project Database 1987–2015: Data File Documentation.* Washington, DC: Delta Cost Project at American Institutes for Research. https://deltacostproject.org/.
- Izrael, David, David C. Hoaglin, and Michael P. Battaglia. 2000. "A SAS Macro for Balancing a Weighted Sample." In *Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference*, Paper 275. Cary, NC: SAS Users Group International. https://pdfs.semanticscholar.org/f777/e121632ccc23bc2332efa8d1d2b4a5a311d3.pdf.
- Judkins, David. 2019. "Covariate Selection in Small Randomized Studies." Presentation at the Joint Statistical Meetings, Denver, Colorado. https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/Abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/Abstractid=30">https://ww2.amstat.org/meetings/jsm/2019/onlinep
- Judkins, David, David Fein, and Larry Buron. 2018. *Analysis Plan for the PACE Intermediate* (*Three-Year*) *Follow-up Study*. OPRE Report 2018-95. Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services. https://www.acf.hhs.gov/opre/resource/analysis-plan-for-the-pace-intermediate-three-year-follow-up-study.
- Judkins, David R., and Kristin E. Porter. 2016. "Robustness of Ordinary Least Squares in Randomized Clinical Trials." *Statistics in Medicine* 35 (11): 1763-1773. https://www.statisticsviews.com/details/journalArticle/9169971/Robustness-of-ordinary-least-squares-in-randomized-clinical-trials.html.
- Judkins, D., D. Morganstein, P. Zador, A. Piesse, B. Barrett, and P. Mukhopadhyay. 2007. "Variable Selection and Raking in Propensity Scoring." *Statistics in Medicine* 26: 1022-1033. https://onlinelibrary.wiley.com/doi/10.1002/sim.2591.
- Judkins, David, Randall Juras, Samuel Dastrup, and Mary Farrell. 2020. *The San Diego Workforce Partnership's Bridge to Employment in the Healthcare Industry Program: Appendices for Three-Year Impact Report*. OPRE Report 2020-105. Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services. https://www.acf.hhs.gov/opre/resource/the-san-diego-workforce-partnerships-bridge-to-employment-in-the-healthcare-industry-program-three-year-impact-report-0.
- Kessler, R. C., G. Andrews, D. Mrocek, B. Ustun, and H. U. Wittchen. 1998. "The World Health Organization Composite International Diagnostic Interview Short-form (CIDISF)." *International Journal of Methods in Psychiatric Research* 7 (4): 171-185. https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.47.
- Koch, Gary G., Catherine M. Tangen, Jin-Whan Jung, and Ingrid A. Amara. 1998. "Issues for Covariance Analysis of Dichotomous and Ordered Categorical Data from Randomized Clinical Trials and Non-parametric Strategies for Addressing Them." *Statistics in Medicine* 17: 1863-1892. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0258(19980815/30)17:15/16%3C1863::AID-SIM989%3E3.0.CO%3B2-M.

- Kornfeld, R., and H. Bloom. 1999. "Measuring Program Impact on Earnings and Employment: Do Unemployment Insurance Wage Reports from Employers Agree with Surveys of Individuals?" *Journal of Labor Economics* 17 (1): 168-197. https://www.journals.uchicago.edu/doi/pdfplus/10.1086/209917.
- Le, H., A. Casillas, S. Robbins, and R. Langley. 2005. "Motivational and Skills, Social, and Self-Management Predictors of College Outcomes: Constructing the Student Readiness Inventory." *Educational and Psychological Measurement* 65 (3): 482-508.

 https://www.academia.edu/527739/Motivational and skills social and self-management predictors of college outcomes Constructing the Student Readiness Inventory.
- Lin, W. 2013. "Agnostic Notes on Regression Adjustments to Experimental Data: Reexamining Freedman's Critique." *The Annals of Applied Statistics* 7: 295-318. https://projecteuclid.org/download/pdfview 1/euclid.aoas/1365527200.
- Lumley, T., P. Diehr, S. Emerson, and L. Chen. 2002. "The Importance of the Normality Assumption in Large Public Health Data Sets." *Annual Review of Public Health* 23: 151-169. https://www.annualreviews.org/doi/pdf/10.1146/annurev.publhealth.23.100901.140546.
- Peterson, C. H., A. Casillas, and S. B. Robbins. 2006. "The Student Readiness Inventory and the Big Five: Examining Social Desirability and College Academic Performance." *Personality and Individual Difference* 41 (4): 663-673. https://isiarticles.com/bundles/Article/pre/pdf/76798.pdf.
- Research Triangle Institute. 2012. *SUDAAN Language Manual, Volumes 1 and 2, Release 11.*Research Triangle Park, NC: Author.
- Rolston, Howard, Elizabeth Copson, and Karen Gardiner. 2017. *Valley Initiative for Development and Advancement: Implementation and Early Impact Report*. OPRE Report 2017-83. Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and Families, U.S. Department of Health and Human Services. https://www.acf.hhs.gov/opre/resource/valley-initiative-development-advancement-implementation-early-impact-report.
- Rubin, Donald B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
- Stumpf, S. A., S. M. Colarelli, and K. Hartman. 1983. "Development of the Career Exploration Survey (CES)." *Journal of Vocational Behavior* 22 (2): 191-226. https://www.sciencedirect.com/science/article/abs/pii/0001879183900283.
- Tukey, John W. 1991. "Use of Many Covariates in Clinical Trials." *International Statistical Review* 59(2):123-137. https://www.jstor.org/stable/1403439?seq=1.
- Walker, Joan M. T., Andrew S. Wilkins, James R. Dallaire, Howard M. Sandler, and Kathleen V. Hoover-Dempsey. 2005. "Parental Involvement: Model Revision through Scale Development." *The Elementary School Journal* 106 (2): 85-104.

Abt Associates Appendix References pg. 71

Williams, R. L., and R. E. Folsom. 1981. "Weighted Hotdeck Imputation of Medical Expenditures Based on a Record Check Subsample." In *Proceedings of the American Statistical Association, Section on Survey Research Methods*, 406-411. Alexandria, VA: American Statistical Association.

Abt Associates Appendix References pg. 72